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• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how 
different desiderata should be traded off. 

• E.g. driving 

• Maintaining a safe distance 

• Staying away from the kerbs 

• Maintaining a reasonable speed 

• Assign a set of weights.

• Reward function is tweaked until the desired behaviour is obtained. 
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Markov Decision Process (MDP)
• Represented by a five-tuple 

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

•  is a reward function;R : 𝒮 × 𝒜 → ℝ

•  is a set of transition probabilities;P = {p(s′￼|s, a)}s,a

•  is a discount factor;γ ∈ [0,1)

• Use MDP\R to denote an MDP without a reward function. 

• A police  is a mapping from states to a probability distribution over actions, . π π(a |s)

• Basis functions, aka feature vectors . ϕ : 𝒮 × 𝒜 → [0,1]k
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• We have query access to a feature matrix  whose rows correspond 

to feature vectors  for all . 
Φ ∈ ℝSA×k

ϕ(s, a) s ∈ 𝒮, a ∈ 𝒜

• ;sup
s∈𝒮,a∈𝒜

∥ϕ (s, a) ∥2 ≤ 1

• The reward function is linear, i.e. true reward , where 
 ;

R*(s, a) = w* ⋅ ϕ(s, a)
w* ∈ ℝk

• ;∀s ∈ 𝒮, ∀a ∈ 𝒜, |R(s, a) | ≤ 1

• . ∥w*∥1 ≤ 1
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Feature expectation vector

• Expected accumulated discounted feature value vector: 

, μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) s(0) = s, , π] ∈ ℝk

where the expectation is taken over all random sequence of states drawn  
by first drawing  and choosing actions according to .s ∼ 𝒟 π
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• Assume access to demonstration by some experts . πE

• Obtain an estimate of the expert’s feature expectation μE = μ(πE)

. ̂μE =
1
m

m

∑
i=1

∞

∑
t=0

γtϕ (s(t)
i , a(t)

i )

Given an MDP\R, , , find a policy whose performance is close to 
that of the expert’s, on the unknown reward function.

Φ ̂μE
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Computational models 
• Classical 

•  is stored in a ROM Φ

•  is stored in a RAMΦ′￼

• Quantum 

•  is stored in a Quantum Memory Device (QMD)Φ

𝒪Φ : |s⟩ |a⟩ | 0̄⟩ → |s⟩ |a⟩ |ϕ(s, a)⟩

•  is stored in KP-trees and updated via a QMD Φ′￼
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Algorithm
Algorithm is based on using “inverse reinforcement learning” to try to 

recover the unknown reward function.
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• If there exists some  such that , then terminate and set . imin ̂μE − μ′￼(imin)
q

2
≤ ϵ n = i

• Set . i = i + 1

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]

SVM solver 

Multivariate mean estimation 

RL algorithm

Minimum finding

Multivariate mean estimation 



Total Number of Iterations n

Algorithm terminates when 


n = Õ ( k
ϵ2(1 − γ)2 )
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Õ ( k
ϵ2(1 − γ)2 )

SVM solver


 O ( n + k
ϵ2

log n)
Minimum finding 


O(n)

RL algorithm
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Õ ( S A
ϵ(1 − γ) )



Time Complexity Per Iteration 

• Total number of iterations . n = Õ ( k
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Õ ( S A
ϵ(1 − γ) )



Time Complexity Per Iteration 

• Total number of iterations . n = Õ ( k
ϵ2(1 − γ)2 )

• Total per-iteration time complexity: . Õ ( k + S A
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Summary of results

Algorithm Per-iteration time complexity 

Classical approximate algorithm

Quantum algorithm

Õ ( k + SA
ϵ4(1 − γ)3 )

Õ ( k + S A
ϵ8(1 − γ)1.5 )
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Future Directions

• Apprenticeship learning in a setting where the reward function is 
expressed as a nonlinear function of feature vectors? 

• Apply our quantum algorithm as a subroutine to solve learning problems 

• The Hamiltonian learning problem




