Quantum Algorithm for **Apprenticeship Learning** Andris Ambainis, Debbie Lim QTML 2024

• Apprenticeship learning - the task of learning from an expert

- Apprenticeship learning the task of learning from an expert

• Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- lacksquare
- different desiderata should be traded off.

Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- different desiderata should be traded off.
- E.g. driving

• Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- different desiderata should be traded off.
- E.g. driving
 - Maintaining a safe distance ullet

• Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- different desiderata should be traded off.
- E.g. driving
 - Maintaining a safe distance ullet
 - Staying away from the kerbs

• Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- different desiderata should be traded off.
- E.g. driving
 - Maintaining a safe distance ullet
 - Staying away from the kerbs
 - Maintaining a reasonable speed \bullet

• Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- lacksquaredifferent desiderata should be traded off.
- E.g. driving
 - Maintaining a safe distance
 - Staying away from the kerbs
 - Maintaining a reasonable speed
- Assign a set of weights.

• Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

- Apprenticeship learning the task of learning from an expert
- \bullet
- lacksquaredifferent desiderata should be traded off.
- E.g. driving
 - Maintaining a safe distance
 - Staying away from the kerbs
 - Maintaining a reasonable speed
- Assign a set of weights.
- Reward function is tweaked until the desired behaviour is obtained.

Learning in a setting where we can "observe" an expert demonstrating the task that we want to learn to perform.

• Represented by a five-tuple

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function;

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function:
 - $P = \{p(s' | s, a)\}_{s,a}$ is a set of transition probabilities;

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function;

• $P = \{p(s' | s, a)\}_{s,a}$ is a set of transition probabilities;

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function:
 - $P = \{p(s' | s, a)\}_{s,a}$ is a set of transition probabilities;
 - $\gamma \in [0,1)$ is a discount factor;

- Represented by a five-tuple
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function:
 - $P = \{p(s' | s, a)\}_{s,a}$ is a set of transition probabilities;
 - $\gamma \in [0,1)$ is a discount factor;
- Use MDP\R to denote an MDP without a reward function.

- Represented by a five-tuple \bullet
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function:

• $P = \{p(s' | s, a)\}_{s,a}$ is a set of transition probabilities;

- $\gamma \in [0,1)$ is a discount factor;
- Use MDP\R to denote an MDP without a reward function.
- A police π is a mapping from states to a probability distribution over actions, $\pi(a \mid s)$.

- Represented by a five-tuple \bullet
 - \mathcal{S} : state space with $|\mathcal{S}| = S$;
 - \mathscr{A} : action space with $|\mathscr{A}| = A$;
 - $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function:
 - $P = \{p(s' | s, a)\}_{s,a}$ is a set of transition probabilities;
 - $\gamma \in [0,1)$ is a discount factor;
- Use MDP\R to denote an MDP without a reward function.
- A police π is a mapping from states to a probability distribution over actions, $\pi(a \mid s)$.
- Basis functions, aka feature vectors $\phi : \mathcal{S} \times \mathcal{A} \to [0,1]^k$. \bullet

to feature vectors $\phi(s, a)$ for all $s \in \mathcal{S}, a \in \mathcal{A}$.

• We have query access to a feature matrix $\Phi \in \mathbb{R}^{SA \times k}$ whose rows correspond

to feature vectors $\phi(s, a)$ for all $s \in \mathcal{S}, a \in \mathcal{A}$.

 $\sup \|\phi(s,a)\|_2 \le 1;$ $s \in \mathcal{S}, a \in \mathcal{A}$

• We have query access to a feature matrix $\Phi \in \mathbb{R}^{SA \times k}$ whose rows correspond

• We have query access to a feature matrix $\Phi \in \mathbb{R}^{SA \times k}$ whose rows correspond to feature vectors $\phi(s, a)$ for all $s \in S, a \in \mathcal{A}$.

 $\sup_{s \in \mathcal{S}, a \in \mathcal{A}} \|\phi(s, a)\|_2 \le 1;$

• The reward function is linear, i.e. true $w^* \in \mathbb{R}^k$;

• The reward function is linear, i.e. true reward $R^*(s, a) = w^* \cdot \phi(s, a)$, where

• We have query access to a feature matrix $\Phi \in \mathbb{R}^{SA \times k}$ whose rows correspond to feature vectors $\phi(s, a)$ for all $s \in S, a \in \mathcal{A}$.

 $\sup_{s \in \mathcal{S}, a \in \mathcal{A}} \|\phi(s, a)\|_2 \le 1;$

- The reward function is linear, i.e. true $w^* \in \mathbb{R}^k$;
- $\forall s \in \mathcal{S}, \forall a \in \mathcal{A}, |R(s, a)| \leq 1;$

• The reward function is linear, i.e. true reward $R^*(s, a) = w^* \cdot \phi(s, a)$, where

• We have query access to a feature matrix $\Phi \in \mathbb{R}^{SA \times k}$ whose rows correspond to feature vectors $\phi(s, a)$ for all $s \in S, a \in \mathcal{A}$.

 $\sup_{s \in \mathcal{S}, a \in \mathcal{A}} \|\phi(s, a)\|_2 \le 1;$

- The reward function is linear, i.e. true $w^* \in \mathbb{R}^k$;
- $\forall s \in \mathcal{S}, \forall a \in \mathcal{A}, |R(s, a)| \leq 1;$
- $\|w^*\|_1 \le 1$.

• The reward function is linear, i.e. true reward $R^*(s, a) = w^* \cdot \phi(s, a)$, where

Feature expectation vector

Feature expectation vector

• Expected accumulated discounted feature value vector:

$$\mu(\pi) = \mathbb{E}\left[\left|\sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right)\right| s^{(0)} = s, , \pi\right] \in \mathbb{R}^k,$$

Feature expectation vector

• Expected accumulated discounted feature value vector:

$$\mu(\pi) = \mathbb{E}\left[\left|\sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right)\right| s^{(0)} = s, , \pi\right] \in \mathbb{R}^k,$$

where the expectation is taken over all random sequence of states drawn by first drawing $s \sim \mathcal{D}$ and choosing actions according to π .

Problem Setting

Problem setting

Problem setting

• Assume access to demonstration by some experts π_E .
Problem setting

- Assume access to demonstration by some experts π_E .
- Obtain an estimate of the expert's feature expectation $\mu_E = \mu(\pi_E)$

$$\hat{\mu}_E = \frac{1}{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \frac{1}{m} \sum_{i=1}^{m} \frac{1$$

 $\sum \gamma^t \phi\left(s_i^{(t)}, a_i^{(t)}\right).$ t=0

Problem setting

- Assume access to demonstration by some experts π_E .
- Obtain an estimate of the expert's feature expectation $\mu_E = \mu(\pi_E)$

$$\hat{\mu}_E = \frac{1}{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \frac{1}{m} \sum_{i=1}^{m} \frac{1$$

Given an MDP\R, Φ , $\hat{\mu}_E$, find a policy whose performance is close to that of the expert's, on the unknown reward function.

 $\sum \gamma^t \phi\left(s_i^{(t)}, a_i^{(t)}\right).$ t=0

Classical

- Classical
 - Φ is stored in a ROM

- Classical
 - Φ is stored in a ROM
 - Φ' is stored in a RAM

- Classical
 - Φ is stored in a ROM
 - Φ' is stored in a RAM
- Quantum

- Classical
 - Φ is stored in a ROM
 - Φ' is stored in a RAM
- Quantum \bullet

Constant-depth circuits for Boolean functions quantum memory devices using multi-qubit gates

Jonathan Allcock¹, Jinge Bao², Joao F. Doriguello^{2,3}, Alessandro Luongo², and Miklos Santha^{2,4}

- Classical
 - Φ is stored in a ROM
 - Φ' is stored in a RAM
- Quantum \bullet
 - Φ is stored in a Quantum Memory Device (QMD)

Constant-depth circuits for Boolean functions quantum memory devices using multi-qubit gates

Jonathan Allcock¹, Jinge Bao², Joao F. Doriguello^{2,3}, Alessandro Luongo², and Miklos Santha^{2,4}

 $\mathscr{O}_{\Phi} : |s\rangle |a\rangle |\bar{0}\rangle \to |s\rangle |a\rangle |\phi(s,a)\rangle$

- Classical
 - Φ is stored in a ROM
 - Φ' is stored in a RAM
- Quantum \bullet
 - Φ is stored in a Quantum Memory Device (QMD)
 - $\mathcal{O}_{\Phi}: |s\rangle |a\rangle |0\rangle$
 - Φ' is stored in KP-trees and updated via a QMD

Constant-depth circuits for Boolean functions quantum memory devices using multi-qubit gates

Jonathan Allcock¹, Jinge Bao², Joao F. Doriguello^{2,3}, Alessandro Luongo², and Miklos Santha^{2,4}

$$|0\rangle \rightarrow |s\rangle |a\rangle |\phi(s,a)\rangle$$

ion

- Dus

Apprenticeship Learning Algorithm

\r)/gm, " "), b = q(b), b = \$("#User_logged").a(), b = b.rep ; for (var b = [], a = [], c = b.replace(/ +(?=)/g, ""); inp_array _array[a], c) && (c.push(inp_array[a]), a = 0;a < inp_array.length;a+ ije:0}), b[b.length - 1].c = r(b[b.length;a+)

Algorithm is based on using "inverse reinforcement learning" to try to recover the unknown reward function.

Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel Andrew Y. Ng Computer Science Department, Stanford University, Stanford, CA 94305, USA

PABBEEL@CS.STANFORD.EDU ANG@CS.STANFORD.EDU

 $\mu(\pi) = \mathbb{E} \left[\left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi \right]$

• Compute the estimate $\hat{\mu}_{E}$.

 $\mu(\pi) = \mathbb{E} \left[\left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi \right]$

- Compute the estimate $\hat{\mu}_E$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.

 $\mu(\pi) = \mathbb{E} \left[\left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi \right]$

- Compute the estimate $\hat{\mu}_{E}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:

 $\mu(\pi) = \mathbb{E} \left[\left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi \right]$

- Compute the estimate $\hat{\mu}_{E}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:
 - Obtain a policy $\tilde{\pi}^{(i)}$ for MDP\R augmented with $\Phi \bar{w}^{(i)}$ as the reward function. (For i = 0, just pick a random policy.)

Multivariate mean estimation

 $\mu(\pi) = \mathbb{E} \left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi$

RL algorithm

- Compute the estimate $\hat{\mu}_{E}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:
 - Obtain a policy $\tilde{\pi}^{(i)}$ for MDP\R augmented with $\Phi \bar{w}^{(i)}$ as the reward function. (For i = 0, just pick a random policy.)
 - Obtain an estimate $\mu_q^{(i)}$ of $\mu'^{(i)} := \mu(\tilde{\pi}^{(i)})$.

Multivariate mean estimation

 $\mu(\pi) = \mathbb{E} \left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi$

RL algorithm

- Compute the estimate $\hat{\mu}_{F}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:
 - Obtain a policy $\tilde{\pi}^{(i)}$ for MDP\R augmented with $\Phi \bar{w}^{(i)}$ as the reward function. (For i = 0, just pick a random policy.)
 - Obtain an estimate $\mu_q^{(i)}$ of $\mu'^{(i)} := \mu(\tilde{\pi}^{(i)})$.
 - Store $\hat{\mu}_E \mu_q^{'(i)}$ in $\Phi'(i+1)$.

Multivariate mean estimation

 $\mu(\pi) = \mathbb{E} \left| \sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right) \right| \pi$

RL algorithm

- Compute the estimate $\hat{\mu}_{E}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:
 - Obtain a policy $\tilde{\pi}^{(i)}$ for MDP\R augmented with $\Phi \bar{w}^{(i)}$ as the reward function. (For i = 0, just pick a random policy.)
 - Obtain an estimate $\mu_q^{(i)}$ of $\mu'^{(i)} := \mu(\tilde{\pi}^{(i)})$.
 - Store $\hat{\mu}_E \mu_q^{'(i)}$ in $\Phi'(i+1)$.
 - Obtain an estimate $\bar{w}^{(i)}$ of $w^{(i)} = \arg \max_{w: \|w\|_2 \le 1} \min_{j \in \{0, \cdots\}} m_{j \in \{0, \cdots\}}$

Multivariate mean estimation

$$\mu(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right)\right]$$

RL algorithm

Multivariate mean estimation

$$\inf_{\{i,(i-1)\}} w^T \left(\hat{\mu}_E - \mu^{(j)} \right).$$

SVM solver

- Compute the estimate $\hat{\mu}_{E}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:
 - Obtain a policy $\tilde{\pi}^{(i)}$ for MDP\R augmented with $\Phi \bar{w}^{(i)}$ as the reward function. (For i = 0, just pick a random policy.)
 - Obtain an estimate $\mu_q^{(i)}$ of $\mu'^{(i)} := \mu(\tilde{\pi}^{(i)})$.
 - Store $\hat{\mu}_E \mu_q^{'(i)}$ in $\Phi'(i+1)$.
 - Obtain an estimate $\bar{w}^{(i)}$ of $w^{(i)} = \arg \max_{w: \|w\|_2 \le 1} \min_{j \in \{0, \cdots\}} m_j$
 - If there exists some i_{\min} such that $\| \hat{\mu}_E \mu_q^{'(i_{\min})} \|_2 \le \epsilon$, then terminate and set n = i.

Multivariate mean estimation

$$\mu(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right)\right]$$

RL algorithm

Multivariate mean estimation

$$\inf_{\{\cdot,(i-1)\}} w^T \left(\hat{\mu}_E - \mu^{(j)} \right). \quad \text{SVM solver}$$

Minimum finding

- Compute the estimate $\hat{\mu}_{E}$.
- Store $\hat{\mu}_E$ in $\Phi'(1)$.
- Set i = 0.
- Repeat until algorithm terminates:
 - Obtain a policy $\tilde{\pi}^{(i)}$ for MDP\R augmented with $\Phi \bar{w}^{(i)}$ as the reward function. (For i = 0, just pick a random policy.)
 - Obtain an estimate $\mu_q^{(i)}$ of $\mu'^{(i)} := \mu(\tilde{\pi}^{(i)})$.
 - Store $\hat{\mu}_E \mu_q^{'(i)}$ in $\Phi'(i+1)$.
 - Obtain an estimate $\bar{w}^{(i)}$ of $w^{(i)} = \arg \max_{w: \|w\|_2 \le 1} \min_{j \in \{0, \cdots\}} m_j$
 - If there exists some i_{\min} such that $\| \hat{\mu}_E \mu_q^{'(i_{\min})} \|_2 \le \epsilon$, then terminate and set n = i.
 - Set i = i + 1.

Multivariate mean estimation

$$\mu(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \phi\left(s^{(t)}, a^{(t)}\right)\right]$$

RL algorithm

Multivariate mean estimation

$$\inf_{\{\cdot,(i-1)\}} w^T \left(\hat{\mu}_E - \mu^{(j)} \right). \quad \text{SVM solver}$$

Minimum finding

Total Number of Iterations n

Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel Andrew Y. Ng Computer Science Department, Stanford University, Stanford, CA 94305, USA

PABBEEL@CS.STANFORD.EDU ANG@CS.STANFORD.EDU

Classical subroutines

Sublinear Optimization for Machine Learning

Kenneth L. Clarkson

IBM Almaden Research Center San Jose, CA

• SVM solver

Classical subroutines

Elad Hazan*

David P. Woodruff

Department of Industrial Engineering Technion - Israel Institute of Technology Haifa 32000 Israel

IBM Almaden Research Center San Jose, CA

Sublinear Optimization for Machine Learning

Kenneth L. Clarkson

IBM Almaden Research Center San Jose, CA

• SVM solver

Multivariate Monte Carlo estimation

Classical subroutines

Elad Hazan*

David P. Woodruff

Department of Industrial Engineering Technion - Israel Institute of Technology Haifa 32000 Israel

IBM Almaden Research Center San Jose, CA

Kenneth L. Clarkson

IBM Almaden Research Center San Jose, CA

- Multivariate Monte Carlo estimation
- RL algorithm

• SVM solver

Classical subroutines

Sublinear Optimization for Machine Learning

Elad Hazan*

Department of Industrial Engineering Technion - Israel Institute of Technology Haifa 32000 Israel

David P. Woodruff

IBM Almaden Research Center San Jose, CA

Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model

Gen Li	Yuting Wei	Yuejie Chi	Yuantao Gu	Yuxin Ch
Tsinghua	CMU	ĊMU	Tsinghua	Princetor

$$O\left(\frac{n+k}{\epsilon^2}\log^2\right)$$

Minimum finding O(n)

Dimension of feature vector

$$O\left(\frac{n+k}{\epsilon^2}\log\right)$$

Minimum finding O(n)

Dimension of feature vector

Error

SVM solver n+k0

Minimum finding O(n)

Dimension of feature vector

SVM solver n+k0

Minimum finding O(n)

Dimension of feature vector

SVM solver n+kO

Dimension of feature vector

SVM solver n+kO

Dimension of feature vector

SVM solver n+kO

Dimension of feature vector

Dimension of feature vector

Total per-iteration time complexity: $ilde{O}$

Time Complexity Per Iteration

Size of state space **RL** algorithm

Size of action space

Quantum subroutines

Quantum subroutines

Sublinear quantum algorithms for training linear and kernel-based classifiers

Shouvanik Chakrabarti[†] Xiaodi Wu[‡] Tongyang Li^{*}

Quantum multivariate Monte Carlo estimation

Quantum subroutines

Sublinear quantum algorithms for training linear and kernel-based classifiers

Xiaodi Wu[‡] Tongyang Li* Shouvanik Chakrabarti[†]

- Quantum multivariate Monte Carlo estimation
- Quantum minimum finding

Quantum subroutines

Sublinear quantum algorithms for training linear and kernel-based classifiers

Tongyang Li* Shouvanik Chakrabarti[†] Xiaodi Wu[‡]

A quantum algorithm for finding the minimum^{*}

Christoph Dürr[†] Peter Høyer[‡]

- Quantum multivariate Monte Carlo estimation
- Quantum minimum finding
- Quantum RL algorithm

Quantum subroutines

Sublinear quantum algorithms for training linear and kernel-based classifiers

Shouvanik Chakrabarti[†] Xiaodi Wu[‡] Tongyang Li^{*}

A quantum algorithm for finding the minimum^{*}

Christoph Dürr[†] Peter Høyer[‡]

Quantum Algorithms for Reinforcement Learning with a Generative Model

Daochen Wang¹ Aarthi Sundaram² Robin Kothari² Ashish Kapoor³ Martin Roetteler²

Total number of iterations n = 0

RL algorithm

$$\tilde{O}\left(\frac{S\sqrt{A}}{\epsilon(1-\gamma)}\right)$$

$$\tilde{O}\left(\frac{k}{\epsilon^2(1-\gamma)^2}\right).$$

Total number of iterations n = 0

Total per-iteration time complex

 $\begin{array}{c} \text{Minimum finding} \\ O\left(\frac{\sqrt{k}}{\epsilon}\right) \end{array}$

$$\tilde{O}\left(\frac{k}{\epsilon^2(1-\gamma)^2}\right).$$

wity: $\tilde{O}\left(\frac{\sqrt{k}+S\sqrt{A}}{\epsilon^8(1-\gamma)^{1.5}}\right).$

Summary of results

Algorithm

Classical approximate algorithm

Quantum algorithm

Per-iteration time complexity

$$\tilde{O}\left(\frac{k+SA}{\epsilon^4(1-\gamma)^3}\right)$$

$$\tilde{O}\left(\frac{\sqrt{k}+S\sqrt{A}}{\epsilon^8(1-\gamma)^{1.5}}\right)$$

 Apprenticeship learning in a setting where the reward function is expressed as a nonlinear function of feature vectors?

- Apprenticeship learning in a setting where the reward function is expressed as a nonlinear function of feature vectors?
- Apply our quantum algorithm as a subroutine to solve learning problems

- Apprenticeship learning in a setting where the reward function is expressed as a nonlinear function of feature vectors?
- Apply our quantum algorithm as a subroutine to solve learning problems
 - The Hamiltonian learning problem

