
Quantum Algorithm for
Apprenticeship Learning

Andris Ambainis, Debbie Lim
QTML 2024

Apprenticeship Learning

Apprenticeship learning

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

• E.g. driving

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

• E.g. driving

• Maintaining a safe distance

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

• E.g. driving

• Maintaining a safe distance

• Staying away from the kerbs

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

• E.g. driving

• Maintaining a safe distance

• Staying away from the kerbs

• Maintaining a reasonable speed

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

• E.g. driving

• Maintaining a safe distance

• Staying away from the kerbs

• Maintaining a reasonable speed

• Assign a set of weights.

Apprenticeship learning
• Apprenticeship learning - the task of learning from an expert

• Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

• Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

• E.g. driving

• Maintaining a safe distance

• Staying away from the kerbs

• Maintaining a reasonable speed

• Assign a set of weights.

• Reward function is tweaked until the desired behaviour is obtained.

Markov Decision Processes
(MDPs)

Markov Decision Process (MDP)

Markov Decision Process (MDP)
• Represented by a five-tuple

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

• is a set of transition probabilities;P = {p(s′ |s, a)}s,a

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

• is a set of transition probabilities;P = {p(s′ |s, a)}s,a

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

• is a set of transition probabilities;P = {p(s′ |s, a)}s,a

• is a discount factor;γ ∈ [0,1)

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

• is a set of transition probabilities;P = {p(s′ |s, a)}s,a

• is a discount factor;γ ∈ [0,1)

• Use MDP\R to denote an MDP without a reward function.

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

• is a set of transition probabilities;P = {p(s′ |s, a)}s,a

• is a discount factor;γ ∈ [0,1)

• Use MDP\R to denote an MDP without a reward function.

• A police is a mapping from states to a probability distribution over actions, . π π(a |s)

Markov Decision Process (MDP)
• Represented by a five-tuple

• : state space with ;𝒮 |𝒮 | = S

• : action space with ;𝒜 |𝒜 | = A

• is a reward function;R : 𝒮 × 𝒜 → ℝ

• is a set of transition probabilities;P = {p(s′ |s, a)}s,a

• is a discount factor;γ ∈ [0,1)

• Use MDP\R to denote an MDP without a reward function.

• A police is a mapping from states to a probability distribution over actions, . π π(a |s)

• Basis functions, aka feature vectors . ϕ : 𝒮 × 𝒜 → [0,1]k

Our assumptions

Our assumptions
• We have query access to a feature matrix whose rows correspond

to feature vectors for all .
Φ ∈ ℝSA×k

ϕ(s, a) s ∈ 𝒮, a ∈ 𝒜

Our assumptions
• We have query access to a feature matrix whose rows correspond

to feature vectors for all .
Φ ∈ ℝSA×k

ϕ(s, a) s ∈ 𝒮, a ∈ 𝒜

• ;sup
s∈𝒮,a∈𝒜

∥ϕ (s, a) ∥2 ≤ 1

Our assumptions
• We have query access to a feature matrix whose rows correspond

to feature vectors for all .
Φ ∈ ℝSA×k

ϕ(s, a) s ∈ 𝒮, a ∈ 𝒜

• ;sup
s∈𝒮,a∈𝒜

∥ϕ (s, a) ∥2 ≤ 1

• The reward function is linear, i.e. true reward , where
 ;

R*(s, a) = w* ⋅ ϕ(s, a)
w* ∈ ℝk

Our assumptions
• We have query access to a feature matrix whose rows correspond

to feature vectors for all .
Φ ∈ ℝSA×k

ϕ(s, a) s ∈ 𝒮, a ∈ 𝒜

• ;sup
s∈𝒮,a∈𝒜

∥ϕ (s, a) ∥2 ≤ 1

• The reward function is linear, i.e. true reward , where
 ;

R*(s, a) = w* ⋅ ϕ(s, a)
w* ∈ ℝk

• ;∀s ∈ 𝒮, ∀a ∈ 𝒜, |R(s, a) | ≤ 1

Our assumptions
• We have query access to a feature matrix whose rows correspond

to feature vectors for all .
Φ ∈ ℝSA×k

ϕ(s, a) s ∈ 𝒮, a ∈ 𝒜

• ;sup
s∈𝒮,a∈𝒜

∥ϕ (s, a) ∥2 ≤ 1

• The reward function is linear, i.e. true reward , where
 ;

R*(s, a) = w* ⋅ ϕ(s, a)
w* ∈ ℝk

• ;∀s ∈ 𝒮, ∀a ∈ 𝒜, |R(s, a) | ≤ 1

• . ∥w*∥1 ≤ 1

Feature expectation vector

Feature expectation vector

• Expected accumulated discounted feature value vector:

, μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) s(0) = s, , π] ∈ ℝk

Feature expectation vector

• Expected accumulated discounted feature value vector:

, μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) s(0) = s, , π] ∈ ℝk

where the expectation is taken over all random sequence of states drawn
by first drawing and choosing actions according to .s ∼ 𝒟 π

Problem Setting

Problem setting

Problem setting
• Assume access to demonstration by some experts . πE

Problem setting
• Assume access to demonstration by some experts . πE

• Obtain an estimate of the expert’s feature expectation μE = μ(πE)

. ̂μE =
1
m

m

∑
i=1

∞

∑
t=0

γtϕ (s(t)
i , a(t)

i)

Problem setting
• Assume access to demonstration by some experts . πE

• Obtain an estimate of the expert’s feature expectation μE = μ(πE)

. ̂μE =
1
m

m

∑
i=1

∞

∑
t=0

γtϕ (s(t)
i , a(t)

i)

Given an MDP\R, , , find a policy whose performance is close to
that of the expert’s, on the unknown reward function.

Φ ̂μE

Computational Models

Computational models

Computational models
• Classical

Computational models
• Classical

• is stored in a ROM Φ

Computational models
• Classical

• is stored in a ROM Φ

• is stored in a RAMΦ′

Computational models
• Classical

• is stored in a ROM Φ

• is stored in a RAMΦ′

• Quantum

Computational models
• Classical

• is stored in a ROM Φ

• is stored in a RAMΦ′

• Quantum

Computational models
• Classical

• is stored in a ROM Φ

• is stored in a RAMΦ′

• Quantum

• is stored in a Quantum Memory Device (QMD)Φ

𝒪Φ : |s⟩ |a⟩ | 0̄⟩ → |s⟩ |a⟩ |ϕ(s, a)⟩

Computational models
• Classical

• is stored in a ROM Φ

• is stored in a RAMΦ′

• Quantum

• is stored in a Quantum Memory Device (QMD)Φ

𝒪Φ : |s⟩ |a⟩ | 0̄⟩ → |s⟩ |a⟩ |ϕ(s, a)⟩

• is stored in KP-trees and updated via a QMD Φ′

Apprenticeship Learning
Algorithm

Algorithm
Algorithm is based on using “inverse reinforcement learning” to try to

recover the unknown reward function.

Algorithm
μ(π) = 𝔼 [

∞

∑
t=0

γtϕ (s(t), a(t)) π]

Algorithm
• Compute the estimate . ̂μE μ(π) = 𝔼 [

∞

∑
t=0

γtϕ (s(t), a(t)) π]
Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)
μ(π) = 𝔼 [

∞

∑
t=0

γtϕ (s(t), a(t)) π]
Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]
Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

• Obtain a policy for MDP\R augmented with as the reward function. (For , just pick a random policy.)π̃(i) Φw̄(i) i = 0

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]
Multivariate mean estimation

RL algorithm

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

• Obtain a policy for MDP\R augmented with as the reward function. (For , just pick a random policy.)π̃(i) Φw̄(i) i = 0

• Obtain an estimate of .μ(i)
q μ′ (i) := μ (π̃(i))

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]
Multivariate mean estimation

RL algorithm

Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

• Obtain a policy for MDP\R augmented with as the reward function. (For , just pick a random policy.)π̃(i) Φw̄(i) i = 0

• Obtain an estimate of .μ(i)
q μ′ (i) := μ (π̃(i))

• Store in . ̂μE − μ′ (i)
q Φ′ (i + 1)

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]
Multivariate mean estimation

RL algorithm

Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

• Obtain a policy for MDP\R augmented with as the reward function. (For , just pick a random policy.)π̃(i) Φw̄(i) i = 0

• Obtain an estimate of .μ(i)
q μ′ (i) := μ (π̃(i))

• Store in . ̂μE − μ′ (i)
q Φ′ (i + 1)

• Obtain an estimate of . w̄(i) w(i) = arg maxw:∥w∥2≤1 min
j∈{0,⋯,(i−1)}

wT (̂μE − μ(j))

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]

SVM solver

Multivariate mean estimation

RL algorithm

Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

• Obtain a policy for MDP\R augmented with as the reward function. (For , just pick a random policy.)π̃(i) Φw̄(i) i = 0

• Obtain an estimate of .μ(i)
q μ′ (i) := μ (π̃(i))

• Store in . ̂μE − μ′ (i)
q Φ′ (i + 1)

• Obtain an estimate of . w̄(i) w(i) = arg maxw:∥w∥2≤1 min
j∈{0,⋯,(i−1)}

wT (̂μE − μ(j))

• If there exists some such that , then terminate and set . imin ̂μE − μ′ (imin)
q

2
≤ ϵ n = i

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]

SVM solver

Multivariate mean estimation

RL algorithm

Minimum finding

Multivariate mean estimation

Algorithm
• Compute the estimate . ̂μE

• Store in . ̂μE Φ′ (1)

• Set . i = 0

• Repeat until algorithm terminates:

• Obtain a policy for MDP\R augmented with as the reward function. (For , just pick a random policy.)π̃(i) Φw̄(i) i = 0

• Obtain an estimate of .μ(i)
q μ′ (i) := μ (π̃(i))

• Store in . ̂μE − μ′ (i)
q Φ′ (i + 1)

• Obtain an estimate of . w̄(i) w(i) = arg maxw:∥w∥2≤1 min
j∈{0,⋯,(i−1)}

wT (̂μE − μ(j))

• If there exists some such that , then terminate and set . imin ̂μE − μ′ (imin)
q

2
≤ ϵ n = i

• Set . i = i + 1

μ(π) = 𝔼 [
∞

∑
t=0

γtϕ (s(t), a(t)) π]

SVM solver

Multivariate mean estimation

RL algorithm

Minimum finding

Multivariate mean estimation

Total Number of Iterations n

Algorithm terminates when

n = Õ (k
ϵ2(1 − γ)2)

Classical subroutines

Classical subroutines

• SVM solver

Classical subroutines

• SVM solver

• Multivariate Monte Carlo estimation

Classical subroutines

• SVM solver

• Multivariate Monte Carlo estimation

• RL algorithm

Time Complexity Per Iteration

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error Discount factor

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error Discount factor # iterations

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error Discount factor # iterations

Size of state space

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error Discount factor # iterations

Size of state space

Size of action space

Time Complexity Per Iteration

• Total number of iterations n = Õ (k
ϵ2(1 − γ)2)

Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error Discount factor # iterations

Size of state space

Size of action space

Time Complexity Per Iteration

• Total number of iterations n = Õ (k
ϵ2(1 − γ)2)

• Total per-iteration time complexity: Õ (k + SA
ϵ4(1 − γ)3)

Multivariate Monte Carlo

Õ (k
ϵ2(1 − γ)2)

SVM solver

 O (n + k
ϵ2

log n)
Minimum finding

O(n)

RL algorithm

Õ (SA
ϵ2(1 − γ)3)

Dimension of feature vector

Error Discount factor # iterations

Size of state space

Size of action space

Quantum subroutines

Quantum subroutines

• Quantum SVM solver

Quantum subroutines

• Quantum SVM solver

• Quantum multivariate Monte Carlo estimation

Quantum subroutines

• Quantum SVM solver

• Quantum multivariate Monte Carlo estimation

• Quantum minimum finding

Quantum subroutines

• Quantum SVM solver

• Quantum multivariate Monte Carlo estimation

• Quantum minimum finding

• Quantum RL algorithm

Time Complexity Per Iteration

Time Complexity Per Iteration
Multivariate Monte Carlo

Õ (k
ϵ(1 − γ))

SVM solver

 Õ (
n

ϵ4
+

k
ϵ8)

Minimum finding

O (k
ϵ)

RL algorithm

Õ (S A
ϵ(1 − γ))

Time Complexity Per Iteration

• Total number of iterations . n = Õ (k
ϵ2(1 − γ)2)

Multivariate Monte Carlo

Õ (k
ϵ(1 − γ))

SVM solver

 Õ (
n

ϵ4
+

k
ϵ8)

Minimum finding

O (k
ϵ)

RL algorithm

Õ (S A
ϵ(1 − γ))

Time Complexity Per Iteration

• Total number of iterations . n = Õ (k
ϵ2(1 − γ)2)

• Total per-iteration time complexity: . Õ (k + S A
ϵ8(1 − γ)1.5)

Multivariate Monte Carlo

Õ (k
ϵ(1 − γ))

SVM solver

 Õ (
n

ϵ4
+

k
ϵ8)

Minimum finding

O (k
ϵ)

RL algorithm

Õ (S A
ϵ(1 − γ))

Conclusion

Summary of results

Algorithm Per-iteration time complexity

Classical approximate algorithm

Quantum algorithm

Õ (k + SA
ϵ4(1 − γ)3)

Õ (k + S A
ϵ8(1 − γ)1.5)

Future Directions

Future Directions

• Apprenticeship learning in a setting where the reward function is
expressed as a nonlinear function of feature vectors?

Future Directions

• Apprenticeship learning in a setting where the reward function is
expressed as a nonlinear function of feature vectors?

• Apply our quantum algorithm as a subroutine to solve learning problems

Future Directions

• Apprenticeship learning in a setting where the reward function is
expressed as a nonlinear function of feature vectors?

• Apply our quantum algorithm as a subroutine to solve learning problems

• The Hamiltonian learning problem

