Quantum Algorithm for
Apprenticeship Learning

Andris Ambainis, Debbie Lim
QTML 2024

+4+
¢¢¢¢¢

+++++

oV A:- 7,
N .c;}§\?§9,‘ %
; 'nsﬁaag.’”- (1))
g 9’ .QQ‘E§QM¢$5 -
s SRR |
19 SN2 19
i &t/ OF LATVIA
v
N
2y
o
E

il g |

L5 < ey \’:o(. 5
" R e S

PR G

- -

R
¢ —— P e
e e ap—
v,
— - —— —
. . k"._ aditl -
- 1. it .
I's =T,
N
-

i

Apprenticeship learning

Apprenticeship learning

* Apprenticeship learning - the task of learning from an expert

Apprenticeship learning

* Apprenticeship learning - the task of learning from an expert

* Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Apprenticeship learning

* Apprenticeship learning - the task of learning from an expert
* Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

e Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

Apprenticeship learning

Apprenticeship learning - the task of learning from an expert
Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

E.g. driving

Apprenticeship learning

Apprenticeship learning - the task of learning from an expert
Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

E.g. driving

* Maintaining a safe distance

Apprenticeship learning

Apprenticeship learning - the task of learning from an expert
Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

E.g. driving
* Maintaining a safe distance

e Staying away from the kerbs

Apprenticeship learning

Apprenticeship learning - the task of learning from an expert
Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

E.g. driving
* Maintaining a safe distance
e Staying away from the kerbs

 Maintaining a reasonable speed

Apprenticeship learning

Apprenticeship learning - the task of learning from an expert
Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

E.g. driving
* Maintaining a safe distance
e Staying away from the kerbs
 Maintaining a reasonable speed

Assign a set of weights.

Apprenticeship learning

Apprenticeship learning - the task of learning from an expert
Learning in a setting where we can “observe” an expert demonstrating the task that we want to learn to perform.

Useful in applications where it may be difficult to write down an explicit reward function specifying exactly how
different desiderata should be traded off.

E.g. driving
* Maintaining a safe distance
e Staying away from the kerbs
 Maintaining a reasonable speed
Assign a set of weights.

Reward function is tweaked until the desired behaviour is obtained.

M
a
rk
O
V
D
e
o
Ision P
ro
C
e
S
S
e
S
7

T'

Markov Decision Process (MDP)

Markov Decision Process (MDP)

* Represented by a five-tuple

Markov Decision Process (MDP)

* Represented by a five-tuple

« & state space with | &' | = S;

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;

« o action space with | &/ | = A;

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;
« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

Markov Decision Process (MDP)

* Represented by a five-tuple

« & state space with | &' | = S;

« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

« P={p(s'|s,a)}, , is a set of transition probabilities;

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;
« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

» P=[p(s’|s,a)}; |is a set of transition probabilities;

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;
« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

» P=[p(s’|s,a)}; |is a set of transition probabilities;

« v € [0,1) is a discount factor;

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;
« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

» P=[p(s’|s,a)}; |is a set of transition probabilities;

« v € [0,1) is a discount factor;

e Use MDP\R to denote an MDP without a reward function.

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;
« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

» P=[p(s’|s,a)}; |is a set of transition probabilities;

« v € [0,1) is a discount factor;

e Use MDP\R to denote an MDP without a reward function.

A police & is a mapping from states to a probability distribution over actions, 7(a | s).

Markov Decision Process (MDP)

* Represented by a five-tuple
« & state space with | &' | = S;
« of: action space with |/ | = A;

e R: 8 XA — R is areward function:

» P=[p(s’|s,a)}; |is a set of transition probabilities;

« v € [0,1) is a discount factor;

 Use MDP\R to denote an MDP without a reward function.
A police & is a mapping from states to a probability distribution over actions, 7(a | s).

. Basis functions, aka feature vectors ¢ : & X o/ — [0,1]%.

Our assumptions

Our assumptions

SAXk

» We have query access to a feature matrix ® € |
to feature vectors ¢(s,a) foralls € &,a € .

whose rows correspond

Our assumptions

SAXk

» We have query access to a feature matrix ® € |
to feature vectors ¢(s,a) foralls € &,a € .

whose rows correspond

. sup |lgGs,a) |, < 1

sesd.aed

Our assumptions

SAXk

» We have query access to a feature matrix ® € | whose rows correspond

to feature vectors ¢(s,a) foralls € &,a € .

., sup |l¢(s,a)ll, £ 1;

sesd.aed

» The reward function is linear, i.e. true reward R*(s,a) = w* - @(s, a), where

w*etk;

Our assumptions

SAXk

We have query access to a feature matrix @ € |
to feature vectors ¢(s,a) foralls € &,a € .

whose rows correspond

sup ||p (s,a) |, < 1;

sesd.aed

The reward function is linear, i.e. true reward R*(s,a) = w™ - ¢(s, a), where

w*etk;

Vs e &,Vae A, |R(s,a)| < 1;

Our assumptions

SAXk

We have query access to a feature matrix @ € |
to feature vectors ¢(s,a) foralls € &,a € .

whose rows correspond

sup ||p (s,a) |, < 1;

sesd.aed

The reward function is linear, i.e. true reward R*(s,a) = w™ - ¢(s, a), where

w*etk;

Vs e &,Vae A, |R(s,a)| < 1;

HW*Hl < 1.

Feature expectation vector

Feature expectation vector

 Expected accumulated discounted feature value vector:

u(n) = E [Z }/t¢ (S(t),él(t))

=0

S(O)=S,,7Z'] e | k,

Feature expectation vector

 Expected accumulated discounted feature value vector:

u(r) = E [Zﬂb (5@, a")
=0

S(O)=S,,7Z'] e | k,

where the expectation is taken over all random sequence of states drawn
by first drawing s ~ & and choosing actions according to 7.

Problem setting

Problem setting

» Assume access to demonstration by some experts 7.

Problem setting

» Assume access to demonstration by some experts 7.

» Obtain an estimate of the expert’s feature expectation pu, = u(ny)

o0

=255 o)

=1 =0

Problem setting

» Assume access to demonstration by some experts 7.

» Obtain an estimate of the expert’s feature expectation pu, = u(ny)

m o0

fip = %Z D 7o (Sl@, al-(”)-

=1 =0

Given an MDP\R, O, /i r, find a policy whose performance is close to

that of the expert’s, on the unknown reward function.

wim

O T

o

Computational models

Computational models

e (Classical

Computational models

e (Classical

e s stored in a ROM

Computational models

e (Classical

e s stored in a ROM

e @'is stored in a RAM

Computational models

e (Classical

e s stored in a ROM

e @'is stored in a RAM

e Quantum

Computational models

e (Classical

e s stored in a ROM

o | Constant-depth circuits for Boolean functions and
+ ®'is stored in a RAM quantum memory devices using multi-qubit gates

Jonathan Allcock?!, Jinge Bao?, Joao F. Doriguello®3, Alessandro Luongo?, and

* Quantum Miklos Santha®*

Computational models

e (Classical

e s stored in a ROM

Constant-depth circuits for Boolean functions and
¢ @'js stored in a RAM - - TP
quantum memory devices using multi-qubit gates
Jonathan Allcock?!, Jinge Bao?, Joao F. Doriguello®3, Alessandro Luongo?, and
° Quantum Miklos Santha®*

¢ O js stored in a Quantum Memory Device (QMD)

O |5)1a)|0) = [s)|a)| (s, a))

Computational models

e (Classical

e s stored in a ROM

o | Constant-depth circuits for Boolean functions and
+ ®'is stored in a RAM quantum memory devices using multi-qubit gates

Jonathan Allcock?!, Jinge Bao?, Joao F. Doriguello®3, Alessandro Luongo?, and

* Quantum Miklos Santha®*

¢ O js stored in a Quantum Memory Device (QMD)
Og : |5)|a)|0) = |s)|a)|d(s,a))

« @’js stored in KP-trees and updated via a QMD

e ——— - | - A

"click™); }); $("#no_single").clickfﬂ]nctionz)‘{'1‘:0;‘ var a =
gged”).a()), b =”$S'#no_single_pr'og").a(), C= 8¢ ¢ a(.len;th-2£
<b& (afc] =" "); } b=""; for (c = 9;¢ < a.length;c++) i b

"~ 5} a =b; $("#User_logged"). : : ;
| :) { var g = g ";lf:e)_\: nC.tl?n(a, }); ("

gth)
Apprenticeship Learning &

} re
a.re

»
’ _-—=

Algorithm

Algorithm is based on using “inverse reinforcement learning” to try to
recover the unknown reward function.

Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel PABBEELQCS.STANFORD.EDU
Andrew Y. Ng ANGQCS.STANFORD.EDU

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Algorithm

u(r) =k

« Compute the estimate /i.

Algorithm

Multivariate mean estimation

u(r)

« Compute the estimate /i.

e Store fipin ®(1).

Algorithm

Multivariate mean estimation

u(r)

Compute the estimate /i.
Store fi in ®(1).

Seti = 0.

Repeat until algorithm terminates:

Algorithm

Multivariate mean estimation

u(r)

Algorithm

Multivariate mean estimation

00
Compute the estimate /i.
; um =E |), 7'd (s¥.a?)
=0

Store fi in ®(1).

Seti = 0.
Repeat until algorithm terminates:

- Obtain a policy #”) for MDP\R augmented with ®#'”) as the reward function. (For i = 0, just pick a random policy.) RL algorithm

Algorithm

Multivariate mean estimation

Compute the estimate /i.
E u(m =E |) v'¢ (s,a?)

Store fi in ®(1). —0

Seti = 0.
Repeat until algorithm terminates:

- Obtain a policy #”) for MDP\R augmented with ®#'”) as the reward function. (For i = 0, just pick a random policy.) RL algorithm

e ODbtain an estimate qu(i) of ,u,(i) = U (ﬁ-’(i))_ Multivariate mean estimation

Algorithm

Multivariate mean estimation

Compute the estimate /i.
E u(m =E |) v'¢ (s,a?)

Store fi in ®(1). —0

Seti = 0.
Repeat until algorithm terminates:

- Obtain a policy #”) for MDP\R augmented with ®#'”) as the reward function. (For i = 0, just pick a random policy.) RL algorithm

e ODbtain an estimate qu(i) of ,u,(i) = U (ﬁ-’(i))_ Multivariate mean estimation

+ Store fip — p” in ®'(i + 1).

Algorithm

Multivariate mean estimation

Compute the estimate /i.
E u(m =E |) v'¢ (s,a?)

Store fi in ®(1). —0

Seti = 0.
Repeat until algorithm terminates:

Obtain a policy # for MDP\R augmented with ®w® as the reward function. (For i = 0, just pick a random policy.) RL algorithm

Obtain an estimate ,uc(]i) of =y (ﬁ(i)). Multivariate mean estimation

Store fip — M;i) ind'(i + 1).

Obtain an estimate W\ of w¥) = arg max

' I'(n . — ;U SVM sol

JELO,+-,(i=1)}

Algorithm

Multivariate mean estimation

Compute the estimate /i.
E u(m =E |) v'¢ (s,a?)

Store fi in ®(1). —0

Seti = 0.
Repeat until algorithm terminates:

Obtain a policy # for MDP\R augmented with ®w® as the reward function. (For i = 0, just pick a random policy.) RL algorithm

Obtain an estimate ,uc(]i) of =y (ﬁ(i)). Multivariate mean estimation

Store fip — ﬂ;](i) ind'(i + 1).

Obtain an estimate W\ of w¥) = arg max

' I'ip — U SVM sol

JELO,+-,(i=1)}

) < ¢, then terminate and setn = 1. Minimum finding

If there exists some imin such that || / £ Iuc’](imin
2

Algorithm

Multivariate mean estimation

Compute the estimate /i.
; um =E |), 7'd (s¥.a?)

Store fi in ®(1). —0

Seti = 0.
Repeat until algorithm terminates:

- Obtain a policy #”) for MDP\R augmented with ®#'”) as the reward function. (For i = 0, just pick a random policy.) RL algorithm

e ODbtain an estimate qu(i) of ,u/(i) = U (ﬁ-’(i))_ Multivariate mean estimation
+ Store fip — p” in ®'(i + 1).

Obtain an estimate W\ of w¥) = arg max

' I'ip — U SVM sol

JELO,+-,(i=1)}

) < ¢, then terminate and setn = 1. Minimum finding

. If there exists some i_:. such that || i — Iuc’](imin
2

e Seti =1+ 1.

Total Number of lterations n

Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel PABBEELQCS.STANFORD.EDU
Andrew Y. Ng ANGQCS.STANFORD.EDU

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Algorithm terminates when

~ k

n=aqo

e?(1 —y)?

Classical subroutines

Classical subroutines

Sublinear Optimization for Machine Learning

Kenneth L. Clarkson Elad Hazan* David P. Woodruff

* SVM solver . e
IBM Almaden Research Center epartment of Industrial Engineering IBM Almaden Research Center
San Jose. CA Technion - Israel Institute of Technology San Jose, CA

Haifa 32000 Israel

Classical subroutines

Sublinear Optimization for Machine Learning

Kenneth L. Clarkson Elad Hazan* David P. Woodruff

* SVM solver . e
IBM Almaden Research Center epartment of Industrial Engineering IBM Almaden Research Center
San Jose. CA Technion - Israel Institute of Technology San Jose, CA

Haifa 32000 Israel

 Multivariate Monte Carlo estimation

e SVM solver

Classical subroutines

San Jose, CA

Kenneth L. Clarkson

Department of Industrial Engineering
Technion - Israel Institute of Technology San Jose, CA

IBM Almaden Research Center

Sublinear Optimization for Machine Learning

Elad Hazan* David P. Woodruff

Haifa 32000 Israel

Multivariate Monte Carlo estimation

RL algorithm

Breaking the Sample Size Barrier in Model-Based
Reinforcement Learning with a Generative Model

IBM Almaden Research Center

Gen Li Yuting Wei Yuejie Chi Yuantao Gu Yuxin Chen
Tsinghua CMU CMU Tsinghua Princeton

Time Complexity Per Iteration

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding
- k
O
() O(n)

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding
- k
O
() O(n)

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding
- k
O
() O(n)

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding
- k
O
() O(n)

Time Complexity Per Iteration

Multivariate Monte Carlo
9,
/

Time Complexity Per Iteration
Size of state space

Multivariate Monte Carlo

e

Time Complexity Per Iteration
Size of state space

Multivariate Monte Carlo

e

Time Complexity Per Iteration
Size of state space

Multivariate Monte Carlo SVM solver Minimum finding

_ k
¢ (e?(1 — 7)2> gn)

~ k
. Total number of iterationsn = O | ———
e*(1 —7)7

Time Complexity Per Iteration
Size of state space

Multivariate Monte Carlo SVM solver Minimum finding

. k
O| —
(eX(1 —)’) o)

~ k
. Total number of iterationsn = O | ———
e*(1 —7)7

k + SA)

, lotal per-iteration time complexity: 9, (—
e*(1 — y)3

Quantum subroutines

Quantum subroutines

e Quantum SVM solver

Sublinear quantum algorithms for training linear and
kernel-based classifiers

Tongyang Li* Shouvanik Chakrabartil Xiaodi Wu?

Quantum subroutines

e Quantum SVM solver

Sublinear quantum algorithms for training linear and
kernel-based classifiers

Tongyang Li* Shouvanik Chakrabartil Xiaodi Wu?

 Quantum multivariate Monte Carlo estimation

Quantum subroutines

e Quantum SVM solver

Sublinear quantum algorithms for training linear and
kernel-based classifiers

Tongyang Li* Shouvanik Chakrabartil Xiaodi Wu?

 Quantum multivariate Monte Carlo estimation

e Quantum minimum finding

A quantum algorithm for finding the minimum*

Christoph Diirr’ Peter Hgyer?

Quantum subroutines

Quantum SVM solver

Sublinear quantum algorithms for training linear and
kernel-based classifiers

Tongyang Li* Shouvanik Chakrabartil Xiaodi Wu?

Quantum multivariate Monte Carlo estimation

A quantum algorithm for finding the minimum*

Quantum minimum finding

Christoph Diirr’ Peter Hgyer?

Quantum RL algorithm

Quantum Algorithms for Reinforcement Learning with a Generative Model

Daochen Wang ! Aarthi Sundaram? Robin Kothari? Ashish Kapoor® Martin Roetteler >

Time Complexity Per Iteration

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding
- k k k
o _V* £+£ o V£
e(1 —v) €

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding
- k k k
o _V* £+£ o V£
e(1 —v) €

~ k
. Total number of iterations n = O .
e*(1 —y)?

Time Complexity Per Iteration

Multivariate Monte Carlo SVM solver Minimum finding RL algorithm
k k - SV A
£ N i o VE 5[_SVA
€ e(1 =7)

- k
. Total number of iterationsn = O | ————].
e*(1 —y)?

\/7c+S\f)

(1 =pt»

_ Total per-iteration time complexity: O (

Summary of results

Algorithm Per-iteration time complexity

Classical approximate algorithm

Quantum algorithm

Future Directions

Future Directions

* Apprenticeship learning in a setting where the reward function is
expressed as a nonlinear function of feature vectors?

Future Directions

* Apprenticeship learning in a setting where the reward function is
expressed as a nonlinear function of feature vectors?

* Apply our quantum algorithm as a subroutine to solve learning problems

Future Directions

* Apprenticeship learning in a setting where the reward function is
expressed as a nonlinear function of feature vectors?

* Apply our quantum algorithm as a subroutine to solve learning problems

 The Hamiltonian learning problem

