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Large-scale fault-tolerant quantum computers are likely to enable new solutions for problems known
to be hard for classical computers. This potential is tempered by the reality that hardware is excep-
tionally fragile and error-prone, forming a bottleneck in the development of novel applications. While
error suppression techniques can dramatically boost algorithmic performance, inherent and irreversible
errors, such as T1 processes, limit the ability of achieving quantum utility at scale. Error mitigation
techniques provide a route to go beyond that limit at the price of additional resources overhead [1].
Some of these approaches, such as probabilistic error cancellation (PEC), aim to collect a full descrip-
tion of the noise model to facilitate noise suppression. However, this requires over-sampling which
is costly to acquire and scales poorly as the number of qubits increases. Recently, machine learning
methods have been successfully used for the mitigation of errors in noisy quantum devices [2, 4] and
can, depending on the approach, be designed to scale to large circuits.

In this work, building upon the suggestions presented in [3], we develop such a technique for
problems where the quantity of interest is a set of expectation values such as quantum simulations
or variational quantum eigensolvers (VQE). Using non-parametric ensemble models, we machine-learn
the approximate inverse noise map for a subset of quantum observables. This is achieved by training
models on a closely-related family of circuits which are efficiently simulable, and then using transfer
learning to apply the learned inverse noise map to the circuits of interest. We observe that models are
easily subject to overfitting and that simpler models such as linear regressions offer better results over
more sophisticated models. To demonstrate this approach, we estimate Pauli observables and show
a consistent ability to mitigate errors with a significantly reduced runtime compared to established
mitigation techniques such as PEC and zero-noise extrapolation (ZNE).
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