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This work presents a novel machine learning approach to characterize the noise impacting a
quantum chip and emulate it during simulations. By leveraging reinforcement learning, we train an
agent to introduce noise channels that accurately mimic specific noise patterns. The proposed noise
characterization method has been tested on simulations for small quantum circuits, where it con-
sistently outperformed randomized benchmarking, a widely used noise characterization technique.
Furthermore, we show a practical application of the algorithm using the well-known Grover’s circuit.

Introduction. An important unresolved technological
question concerns the practical applicability of Noisy In-
termediate Scale Quantum (NISQ) [1] computers. The
usability and reliability of these devices are hampered
by errors that arise from gate infidelities, environmen-
tal interactions, thermal relaxation, measurement errors,
and cross-talk [2, 3]. This work aims to develop a model
capable of learning hardware-specific noise for use in cir-
cuit simulations. We use Reinforcement Learning (RL)
to train an agent to add noise channels that replicate the
noise of a specific quantum chip. This method minimizes
heuristic assumptions about the noise model offering in-
creased flexibility compared to conventional techniques.
In this study, we present the results of the RL algo-
rithm in simulated environments, serving as a proof of
concept. Our efforts are currently directed towards gath-
ering empirical data from quantum chips to validate the
algorithm’s efficacy under real operational conditions.

Learning a hardware-specific noise model is moti-
vated by the limited availability of noise prediction
techniques [4–6]. Moreover, the quantum computers
currently accessible in the cloud are in high demand,
leading to long waiting queues to test quantum algo-
rithms. In this context, noise emulation of these devices
emerges as an alternative to accelerate circuit testing.

Background. Reinforcement learning is a machine
learning paradigm used to train an agent to make
optimal decisions in a dynamic environment. It hinges
on the fundamental concepts of policy and reward func-
tions. The policy guides the agent’s behavior, mapping
the environment’s states to actions. The reward function
assigns a numeric value to state-action pairs, indicating
their immediate desirability or associated cost. The
training process involves finding an optimal policy that
maximizes the expected long-term cumulative reward.
During training, various episodes of agent-environment
interaction are executed. At each episode’s end, the
reward is used to update the policy’s weights, typically

approximated by a Neural Network (NN). Recent years
have seen the development of different optimization
methods to enhance RL’s convergence and stability
during training. In our work, we achieved the best
results using Proximal Policy Optimization (PPO) [7].

Quantum device noise presents a significant challenge
in the NISQ era. In this work, we have considered both
coherent and incoherent noise. Coherent noise preserves
the state’s purity and can be corrected once identified,
in our work it is modeled using the single qubit rotation
gates Rx and Rz. Incoherent noise is a non-invertible
process that can be represented using the formalism of
quantum channels. In this work, we utilize two signifi-
cant incoherent noise channels. The depolarizing chan-
nel, which drives the state towards the maximally mixed
state, is defined, for a single qubit, as:

Dep(ρ) = (1− λ)ρ+ λI,

where λ is the depolarization parameter. The amplitude
damping channel models the loss of energy from a qubit
to the environment, and it is described by the map:

Damp(ρ) = A1ρA
†
1 +A2ρA

†
2,

where A1 = |0⟩ ⟨0| +
√
1− γ |1⟩ ⟨1|, A2 =

√
γ |0⟩ ⟨1| and

γ represents the decay probability from |1⟩ to |0⟩.
For simplified noise modeling, we can employ a tech-

nique known as Randomized Benchmarking (RB) [8, 9].
RB allows to efficiently estimate the average error
magnitude across a set of quantum gates, with resource
requirements scaling polynomially with the number of
qubits. Employing RB as a noise predictor involves
extracting the average gate error and introducing a
depolarizing channel with a depolarizing error equal to
this parameter after each gate. This noise model serves
as a basic benchmark for other, more sophisticated,
noise characterization techniques.
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Methodology. The RL algorithm requires training,
testing, and evaluation datasets, which consist of ensem-
bles of random quantum circuits and their corresponding
final states as Density Matrices (DMs). These DMs serve
as ground truth labels during the training phase of the al-
gorithm. All circuits for training are composed of Clifford
gates extracted from the set of native gates {Rx, Rz, CZ}
implemented in the quantum devices of the Technology
Innovation Institute of Abu Dhabi [10]. Clifford gates are
chosen due to their lower simulation cost and their large
use in randomized benchmarking. For the performance
evaluation, we tested the algorithm on non-Clifford cir-
cuits to show that it maintains its ability to generalize.
We have tested the RL algorithm with different noise
models and using different number of qubits. Specifically,
in this work we will report the results obtained on three
qubits circuits using the noise model described in the fol-
lowing. A depolarizing channel with parameter λ = 0.02
is applied after each Rz and CZ gate, and an amplitude
damping channel with decay parameter γ = 0.03 is ap-
plied after each Rx and CZ gate. A coherent Rx(θ

′)
error with angle θ′ = 0.04 · θ is introduced after each
Rx(θ) gate. Similarly, a coherent Rz(θ

′) error is added
after each Rz(θ) gate, with θ′ = 0.03·θ. This noise model
is not intended to be realistic but to test the proposed
algorithm on a gate dependent noise model.

To train the RL agent, we need to represent a quantum
circuit as an array that can be readily processed by the
policy neural network. In the following we refer to this
array as the Quantum Circuit Representation (QCR).
The QCR has the shape of [ qubits, depth, encoding ].
The first dimension corresponds to the circuit’s qubits,
while the second dimension represents the circuit’s mo-
ments. The encoding dimension encodes the information
regarding gates and noise channels acting on a specific
qubit at a specific circuit moment. To enable the agent
to adapt to circuits of varying depths, we introduced
the concept of a kernel size similar to the kernels used
in convolutional neural networks. The kernel size (k)
establishes a “window” that restricts the number of
circuit moments the agent can observe at any given
time. For instance, with k = 3, the agent only observes
the current moment and the immediately preceding and
following ones. The window’s center starts from the
first moment and slides one position at each step until
the circuit’s end is reached. This approach is based
on the heuristic assumption that a gate’s noise is most
influenced by its temporally proximate gates.

The training, conducted using the PPO algorithm, di-
vides the policy NN into two components: the actor NN,
responsible for action selection, and the critic NN, tasked
with reward prediction. The configuration of the policy
NN includes an initial feature extractor composed of a
convolutional layer. The feature extractor’s output is
then passed to the actor and critic NNs, each composed
of two dense layers. The total number of trainable pa-
rameters is of the order of 104.
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FIG. 1. Average trace distance between DMs generated
by the model and the ground truth DMs during training for
1.5× 106 episodes. Error bars report the standard deviation.

Each episode of the training process begins with the
agent receiving a randomly selected quantum circuit from
the training set. For each circuit moment, the agent ob-
serves the QCR and takes an action: any combination
of the selected set of noise channels (depolarizing, ampli-
tude damping and coherent errors Rx and Rz), together
with their corresponding noise parameters, is inserted
in that circuit moment. The agent receives the reward
at the end of each circuit. The reward is a function of
the Trace Distance (TD) between the ground truth DM
(ρtrue) and the DM of the noisy circuit generated by the
agent (ρagent):

Reward(ρagent, ρtrue) =
1

αTD(ρagent, ρtrue)2 + ϵ
,

where α is an hyperparameter and ϵ is a small parameter
introduced to prevent numerical instabilities. The
trace distance is a common metric used in quantum
information to measure the distinguishability between
two quantum states. After numerous episodes, the agent
is expected to learn the optimal placement of noise
channels in a noise-free circuit to reconstruct the final
density matrix of the real noisy circuit. Once trained,
the proposed algorithm should be capable of generalizing
to previously unseen circuits, thereby enabling realistic
noisy simulations.

Results. To train the RL agent, we generated a dataset
of 500 random circuits allocating 400 circuits for training
and reserving the remaining 100 for testing. Figure 1
reports the average trace distance over the training and
test sets obtained by the agent during training for 1.5×
106 episodes. The RL agent effectively learns to simulate
the noise, exhibiting no signs of overfitting.
To assess the model’s generalization capability, we

evaluate it on random circuits of varying depths. Figure 2
reports the performance of the RL agent compared with
the randomized benchmarking method evaluated using
the average trace distance. We have also included two
limit cases: the circuit where no noise has been added
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FIG. 2. Performance comparison of the RL agent with
respect to the RB noise model. The limit cases of circuits
without noise and the maximally mixed state (MMS) are also
reported. Error bars report the standard deviation.
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FIG. 3. Outcome probabilities for a noisy three qubit
Grover’s circuit obtained with the RL algorithm and the RB
noise model. The ground truth noisy outcomes are reported
for comparison.

and the maximally mixed state. The RL agent demon-
strates its adaptability to circuits of different depths, con-
sistently outperforming RB. This result suggests that,
while RB categorizes all noise sources as depolarizing,
our algorithm can discern the specific characteristics of
the noise. The improvement is especially pronounced on
shorter circuits. As the circuit depth increases, the noise
approximates to a global depolarizing channel, reducing
the relative advantage of the RL agent.

We have studied the proposed algorithm using dif-
ferent noise models and a number of qubits spanning
from one to three. The results obtained are similar to
the ones presented in this section. The RL agent is par-
ticularly efficient in the presence of many coherent errors.

We finally report the application of the RL agent for
a famous use case: the circuit to implement Grover’s
algorithm [11]. In particular, we have considered a
circuit to find the target state |11⟩ using an ancillary

qubit, for a total of three qubits. The circuit, transpiled
into native gates, is composed of 40 gates, of which 7 are
CZ gates, for a total of 25 circuit moments. Figure 3
reports the outcome probabilities of the noisy Grover’s
circuit obtained with the RL algorithm and the RB
model. It is possible to observe that the RL algorithm
has a better capability to reconstruct a realistic outcome,
in particular for the peak probability of the state |110⟩.
The fidelity between the ground truth DM and the
one obtained with the RL model is 0.975, while the
fidelity obtained with the RB model is 0.949. The
result obtained on the Grover’s circuit constitutes an
interesting generalization test of the RL agent as this
circuit has a particular structure with respect to the
random circuits used for training.

Conclusions. In this work we have demonstrated that
is is possible to use reinforcement learning for repli-
cating specific noise models. The presented RL model
has showed outstanding generalization properties, con-
sistently outperforming randomized benchmarking in a
simulated environment. While we are working on testing
the algorithm on real quantum hardware, we are consid-
ering potential future applications not only reproducing
a specific noise pattern. Using the knowledge of the noise
for its mitigation could be an interesting approach.
The current model’s limitation is its scalability to

circuits with many qubits. Scaling the model would
necessitate a significant increase in the number of
actions, complicating and lengthening the training
process. Additionally, on quantum hardware, obtaining
the ground truth density matrices for circuits with
many qubits via quantum state tomography requires
exponentially more measurements. We are considering
potential solutions to these challenges. One approach
could involve training the model with probability distri-
butions derived from measurements, rather than density
matrices. To address the first issue, we could partition
large circuits into smaller ones, facilitating parallel
training of multiple smaller models. While these ideas
require further validation, this work demonstrates that
machine learning’s application to learn noise patterns
within small quantum circuits is a promising proof of
concept that could lead to future advancements.
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