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A scalable dual frame optimization protocol improves the statistical performances of

estimators constructed from classical shadows and overcomplete POVMs

Operator averaging with IC-POVMs Parametrizing dual frames

A POVM is a set of operators {M, } (effects) with the following properties: A (non-exhaustive) parametrization of dual frames for a POVM {M,} can be
constructed from a probability distribution {a;} as:

* Positivity Vk: Tr[pM,| = 0, forany p -~ : ~ |

*  Normalization Y M, =1 D, =—F-1(M,) fork=12,..,n * a;, = 1:canonical dual frame

 Born’s Rule p, = Tr[pM,] Ay * a; = Tr[pM,]: optimal dual
frame given the state p [2]

n o Tr[XM,]
where  Fy: X 0 zk 0 Mj, * Q= Tr[;w"]: average optimal
S G_' dual frame (unknown state)

This i1s the one that most classical shadows protocol use

A POVM is said to be Informationally Complete (IC) if it spans the space of
Hermitian operators.

Expectation value estimation. Given a quantum state p prepared by some

quantum algorithm, estimate (0),= Tr[pO] Dual frames in action. For random states and observables, optimize {a,} for

the best possible single-shot variance

Step 1. Decompose F = argmin SSV(M, D, 0, p) = argmmz Tr[pM,]|Tr[OD, ]* — const.
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Common approach for N qubits: use product of 1-qubit POVMs:
My = Mklkz---kN — Mk1® Mk2® ®MkN

Measurement dual frames

Informally, in a finite-dimensional vector space V a frame is a (possibly
overcomplete) collection {v,} € V spanning V. For every frame, there exist at
least another collection of vectors {7}, called a dual frame, such that for
any v € V.we have v = ) (U, V)Vy = Xp{Vk, V).

Problem. This does not guarantee a product structure on the duals, which
can In general become exponentially expensive to manipulate. Notably, this
IS the case for the optimal dual frame given p. Moreover, Explicit optimization
of the dual frame can be cumbersome — especially for adaptive POVMs.

We can think of the elements {M\} of any IC-POVM as a measurement frame
in the vector space of Hermitian operators of the same dimension [2]. In this
case, the duals {D\} represent estimators for quantum states:

Dual frames from empirical frequencies

P = Z(ﬂa: p) g = 2 Palla
_ Random 4-qubit p, O
. “ Idea: converge to the optimal dual frame 1-qubit Pauli shadows measurements
For an observable 0, we can build an estimator via the state estimators, i.e., @ = px Dy estimating p; as frequencies | l
the POVM duals, as 0 = (0, fi,). We then have fi from the actual measurements. I T}
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