

Adiabatic and Evolutionary Algorithms for training VQAs Ernesto Acosta¹ Carlos Cano¹ Guillermo Botella² ¹Universidad de Granada ²Universidad Complutense de Madrid

Gradient-free training Variational Quantum Algorithms

Gradient Descent

Adiabatic & Evolutionary Training

Evolutionary and Adiabatic Quantum Algorithms are good candidates for training Variational Quantum Algorithms requiring less training iterations to convergence and helping to overcome the barren-plateau effect. Here we compare these two new approaches.

Evolutionary approach

Adiabatic approach

Evolutionary Training aims to facilitate seamless integration between evolutionary computation and quantum libraries like Qiskit, while ensuring ease of use, for both quantum computing and EAs communities.

Training Process

IF: Quantum Annealers are known to be great optimizers

AND: Training VQAs is an optimization task,

THEN: VQAs can be Adiabatically trained by defining a proper QUBO formula.

Updates **θ**

QUBO Formulation

Angle search range discretization:

Minimization function:

3

4

()

12

16

20

24

Constraints:

Training process

1. Build VQA

exp(θ/2)

1

1,216

1,480

1,802

2,193

2,669

3,248

4,810

- 2. Discretize angle range in segments.
- 3. Obtain Ansatz Operator Matrix
- 4. Prepare QUBO formulation per record:
 - Expand operator
 - Formulate MSE
 - Update global QUBO
- 5. Run Adiabatic execution
- 6. Update angles and calc. Accuracy.
- 7. If accuracy < tolerance, STOP.
- 8. Repeat step 3 for next segment

EVOVAQ Package details

Algorithms included in EVOVAQ framework:

- Genetic Algorithms
- Differential Evolution
- Particle Swarm Optimization
- Memetic Algorithms

Classical optimizer operates by assuming a default value for the hyper-parameters, such as the population size and the stopping criterion.

References

- [1] Acampora, G., Cano, C., Chiatto, A., Soto Hidalgo, J.M., Vitiello A.,EVOVAQ: EVOlutionary algorithms-based toolbox for VAriational Quantum circuits, SoftwareX, Volume 26, (2024), ISSN 2352-7110 https://doi.org/10.1016/j.softx.2024.101756
- [2] E. Acosta, C. Cano, G. Botella, R. Campos Adiabatic training for Variational Quantum Algorithms, EuroQHPC Workshop (2024) https://doi.org/10.48550/arXiv.2410.18618

V	QA classical	VQA Adiab	atic ANN	
Accuracy	66%	66%	64%	
Table 1. Accuracies.				
Parts Varia	ables Opti	ons ANN	Time (s)	

Table 2. Adiabatic complexity

4.096

65.536

1.048.576

16.777.216 1.296

81

256

625

0,926

0,92

0,927

1,13

R: [-2 <i>π</i> , 0] S: α= <i>π</i> , β=δ=-3 <i>π</i> /2;	γ= -π/2	0,27	R: [0, 2 <i>π</i>] S: α= <i>π</i> /2, β=δ=-3 <i>π</i> /2; χ = - <i>π</i> /2		
	2	3			
-21	· T + 0	0.1	$\pi, 2\pi$		
4	5	6	7		
R: [-2π, -π] S: α=π/2, β,δ=-7π/4; γ= -π/2	R: [-π, 0] S: α=π/2, β,δ=-7π/4; ɣ= -π/4	R: [0, <i>π</i>] S: α=3 <i>π</i> /4, β,δ=-7 <i>π</i> /4; γ= - <i>π</i> /4	R: [π, 2π] no_scan S: α=3π/4, β,δ=-7π/4; γ= -π/4		
K Y		K			
ßδ	V	n			
-7π/4	$-\pi$ $-\pi/4$	3π/4			
-2π	-76	$0 \qquad \pi$	2π		

Results

- Same accuracy with less execution time (ET) and execution cycles (EC).
- EC is constant and ET is smaller for a fixed number of binary variables.
- Iterative approach helps to find the best angles with less resources.
- Adiabatic training is the first hybrid quantum-quantum VQA.

Conclusions

- Accuracy of QRNN with adiabatic training is comparable to classical gradient-descend training on less computing cycles.
- A new research path is presented towards trying to avoid the Barren Plateau effect thanks to the non-gradient dependency.
- The iterative approach overcomes the hardware limitation imposed when trying to optimize in a single scanning step.

Acknowledgements

This work was supported by Ecological and Digital Transition R&D project PID2021-1289700A-I00 call 2022 by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR, and grant PID2021-1230410B-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by "ERDF A way of making Europe".

eacostam@correo.ugr.es | carloscano@ugr.es | gbotella@ucm.es

