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Abstract

Entanglement detection, the task of verifying quantum entanglement, is an impor-
tant problem in quantum information processing, and various approaches have
been proposed to solve it for several decades. Especially in recent years, many
experimental researches have been applied to the task using classical computers,
such as machine learning. While such methods have achieved high accuracy in
entanglement detection, it is reasonable to keep the number of entangled states
used for training as small as possible under the assumption that the problem
of entanglement detection is being tackled. In this study, we propose a machine
learning method for entanglement detection based on PU learning (positive and
unlabeled learning), one of the classical machine learning frameworks, that does
not use data from negative (entangled) states.

Keywords: Entanglement detection, Positive and unlabeled learning, Binary
classification, Semi-supervised learning

1 Introduction

Quantum entanglement plays an important role in quantum information processing.
Its use in areas such as quantum teleportation, quantum computation algorithms, and
quantum cryptography, has been studied to find quantum applications that are not
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feasible with classical computers. Quantum states are generally controlled by quantum
circuits, and verifying the generation of entanglement during the execution of quantum
circuits is an important issue for verifying the operation of algorithms. The problem of
determining whether a given quantum state is an entangled state is known as entan-
glement detection and has been studied for some time (Gühne and Tóth, 2009). PPT
criterion (Peres-Horodeci criterion) is one of the most famous criteria to determine
whether a quantum state is entangled. This is a powerful analytical tool for entan-
glement detection but there are strong constraints on the applicable system. For this
reason, many experimental researches that use classical computers such as machine
learning, have been taken in recent years. In general, classification problem in machine
learning assumes that data of both separable and entangled states are available, but
in the entanglement detection problem, it is generally difficult to prepare the entan-
gled state. As a solution to the difficulty of data generation, learning method using a
GAN (Generative Adversarial Network) that does not use entangled states has been
proposed (Chen et al, 2021). Here, we have proposed a method for the entanglement
detection problem using both separable and unlabeled states (quantum states that
are either separable or not entangled), following the PU learning framework (positive
and unlabeled learning), which is one of the classical machine learning frameworks.
We propose an approach to the entanglement detection problem using both separable
and unlabeled states (Figure 1).

(a) process to make separable state (b) process to make unlabeled state

Fig. 1: Generation processes of separable and unlabeled state. Preparing entangled
data is difficult in the point of verifying so we focus on using separable and unlabeled
states for entanglement detection

2 Methods

We provide a PU learning method using spy, which is one of the labeling methods
in PU learning. This method uses spy to estimate some of the unlabeled states as
negative and then uses these negative data with the original positive data to obtain
classification boundaries with a semi-supervised learning method. In spy method we
divide positive samples in train dataset into two set, positive and spy, which are really
positive but they are treated those as unlabeled(x1 and x3 in Table 1). Then, from
the dataset including spy, we predict the probability of how likely each data point is
labeled from the dataset including spy. The minimum value of the predicted labeled
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probability in the spy dataset pmin(0.55 in Table 1) is used as the threshold value, and
the datum whose labeled probability is predicted to be less than pmin is treated as
unlabeled datum. Now that the dataset has data labeled with positive and negative,
we can use this data to determine the classification boundary using semi-supervised
learning model.

Table 1: Spy method application for Positive and
Unlabeled training set example

Data labeled? Pr(labeled|x) spy? output label
x1 ✓ 0.7 ✓ separable
x2 ✓ 0.4 separable
x3 ✓ 0.55 ✓ separable
x4 0.6 unlabeled
x5 0.3 negative

3 Preliminary results

As preliminary experiments, we applied the PU learning method to a simple 2 qubit
system to check its classification performance (Table 2). As training data, we used
30,000 separable states and 30,000 randomly generated states (unlabeled states), for a
total of 60,000 states. We choiced Gaussian kernel with γ = 10 for one class SVM (ν-
SVM) and (two class) SVM. For hyperparameter ν of one class SVM, we set ν = 0.5
for separable only data and ν = 0.01 for separable and unlabeled data.

Table 2: Experimental results

Method Accuracy F1 score
One class SVM(Separable only) 0.6363 0.7304
One class SVM(Separable+Unlabeled) 0.8115 0.8003
spy(Naive Bayes)+SVM 0.5004 0.6668
spy(Naive Bayes)+Naive Bayes 0.5723 0.6922
spy(Multivariate Normal)+SVM 0.5646 0.6966
spy(Multivariate Normal)+Naive Bayes 0.6258 0.7165
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