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Algorithm: weighted homogeneous ensemble
• Procedure:

1. Encoding positive weights in the amplitudes of the control register;
2. Controlled permutation unitary acting on the data register;
3. Data register partially controls a NOT gate targeting the ancillae;
4. Ancillae are measured for data selection;
5. Classifier is executed and the related output qubit is measured.
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• Execution:

– Training:
∗ Use uniform weights (Hadamard) and measure the control register;
∗ Estimate internal classifiers’ outputs on validation set via multiple runs;
∗ Learn weights using classical logistic regression.

– Testing:
∗ Execute the circuit as showed.

Data Selection: permutation and partial measurement

• Permutation unitary:
– Up performs a permutation of the

data instances and features in
superposition for each control
basis state;

– controlled bit operations, targeting
data register;

– e.g., Up with CSWAPs, CNOTs:
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• Action on the auxiliary register:
– selects data instances and features

in superposition;
– CNOT controlled by partial data

register (idx and feat registers);
– aux can be single qubit (joint selec-

tion) or more qubits (separate);
– P(0) ≈ selection size (binary frac-

tions of instances and features);
– e.g., CCNOT controlled by the first

idx and feat qubits, targeting
a single ancilla aux and post-
select on 0: it creates sets miss-
ing half the features from half
the points (P(0) ≈ 0.75).

Classifier: execution of the same circuit of the original classifier
• Considering a generalized initial state for the classifiers above:

|ψ⟩class =

2n−1,2m−1∑
i,j=0

|i⟩idx |j⟩feat |ψi,j⟩ , (1)

• the final state is as follows:

|Ψ⟩fin =

2d−1∑
c=0

√
wc |c⟩ctrl |ϕc⟩ (αc |0⟩out + βc |1⟩out) |0⟩aux . (2)

• The prediction is obtained according to classical logistic regression with weights wc:

P(0) =
∑2d−1

c=0 wcαc
2∑2d−1

c=0 wc(αc
2 + βc

2)
, y(x) = sign

(
1

1 + e−(kP(0)+b)
− 1

2

)
. (3)

Motivation
• Ensemble methods combine classifiers to improve accuracy and robustness:

– Internal classifiers need to be diverse (e.g., same model with different data).
– Weighted ensembles aggregate internal models assigning different weights.

• Valid for QML: parallel execution by introduction of diversity in superposition.
• Proposal: weighted ensemble with hybrid learning and quantum execution.

Method
• Additional control register of size d that stores learned weights
• By means of instance-based binary classifiers (i.e.):

– Quantum cosine classifier (based on cosine similarity)[1];
– Quantum distance classifier (based on Euclidean distance) [2];
– Quantum SWAP-test classifier (based on state fidelity) [3].

Setup: simulation, normalization and data
• Simulation backend:

– statevector : exact results obtained from the state-vector;
– simulation : Aer simulator, 8192 shots, without noise;

• Data normalization techniques considered:

– none: no normalization applied to the data;
– min-max : normalization into [0, 1] range;
– std : standardization with mean 0 and standard deviation 1.

• 11 real-world datasets from the UCI repository and preprocessed.
• Monte Carlo cross-validation, 10 runs, “80% train" – “20% test".
• Implementation in Python, using Qiskit.

Conclusions
• Enhanced classification performance:

– The weighted quantum ensemble demonstrates an accuracy advantage over individual classifiers.
– Flexible framework for classification through diversity introduction and parallel classifier execution.

• Future work:
– Investigation of different diversity introduction methods, such as parametric circuits, and other classifiers.
– Validation of the ensemble in realistic settings by considering other tasks and real NISQ devices.

Results: simulation
• Only the distance clas-

sifier is considered here
(due to computational
constraints).

• The weighted ensemble
(d = 3) outperforms the
single classifier in all sce-
narios.

• The weighted ensemble
is more affected by cir-
cuit sampling, but still
has better accuracy. 0.2 0.4 0.6 0.8 1.0
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Results: statevector

• The weighted ensemble
outperforms the related
single classifier for all
data normalizations.

• Increasing the control
register size (d) slightly
improves accuracy, on
average.

• Quantum distance and
cosine classifiers perform
similarly (close predic-
tion functions).

• XGBoost (added as
ensemble reference)
is generally the best
performer, but it is
matched in certain
conditions with these
datasets.

Additional remark
The weighted ensemble
with the SWAP-test also
performed well on a syn-
thetic 2-dim XOR dataset,
achieving almost perfect
accuracy, demonstrating
the non-linear capability
(not shown here).
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