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Motivation

Ensemble methods combine classifiers to improve accuracy and robustness: e Additional control register of size d that stores learned weights

— Internal classifiers need to be diverse (e.g., same model with different data). e By means of instance-based binary classifiers (i.c.):

— Weighted ensembles aggregate internal models assigning different weights. — Quantum cosine classifier (based on cosine similarity)|1|;

Valid for QML: parallel execution by introduction of diversity in superposition. — Quantum distance classifier (based on Euclidean distance) [2];
Proposal: weighted ensemble with hybrid learning and quantum execution. — Quantum SWAP-test classifier (based on state fidelity) [3].

Algorithm: weighted homogeneous ensemble

e Procedure:

Data Selection: permutation and partial measurement

1. Encoding positive weights in the amplitudes of the control register:; e Action on the auxiliary register:

¢ Permutation unitary:

2. Controlled permutation unitary acting on the data register; .
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e Considering a generalized initial state for the classifiers above:
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e Execution: e the final state is as follows:
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— Training:
+ Use uniform weights (Hadamard) and measure the control register;

+ Estimate internal classifiers’ outputs on validation set via multiple runs; | ¢ The prediction is obtained according to classical logistic regression with weights w.:
x Learn weights using classical logistic regression.
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* HKxecute the circuit as showed.

Setup: simulation, normalization and data Results: statevector

Simulation backend: Normalization: none
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