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Quantum error correction (QEC) is essential for operating quantum computers in the presence of noise. This
paper explores the application of maximum satisfiability (MaxSAT) techniques to the decoding problem in QEC,
focusing on Calderbank-Shor-Steane (CSS) codes. We introduce a novel method of mapping the QEC decod-
ing problem into a MaxSAT instance, which allows for the efficient identification and correction of errors. By
leveraging the flexibility in formulating MaxSAT instances and incorporating error probabilities as soft clause
weights, we transform the MaxSAT decoder into a maximum likelihood decoder. Furthermore, we discuss the
computational complexity associated with clause density in k-SAT problems and its implications for QEC de-
coders. The proposed approach is validated through numerical simulations and scaling analysis, demonstrating
improved error thresholds and decoding performance. This work provides a promising direction for enhancing
the reliability and efficiency of quantum error correction using advanced classical optimization techniques.

I. INTRODUCTION

Quantum computers promise to solve problems that cannot
be addressed by classical computers. To run quantum com-
puters even in the presence of noise, quantum error correction
codes suppress errors by encoding logical quantum informa-
tion in many redundant physical qubits [1]. Syndrome mea-
surements probe the physical qubits for errors [2]. Then, a
decoder is used to infer the most likely error, and the corre-
sponding correction operation is applied. Here, it is crucial
not to accidentally change the logical information stored in
the code. Decoding is an NP-hard problem, yet to run a quan-
tum computer successfully we need to find a good solution
within the clock speed of the quantum computer. To this end,
various types of decoders have been proposed with varying
speed and accuracy tradeoff. Maximum likelihood decoders
are optimal, but have exponential run time. There are tensor-
network based decoders, neural network decoders, Ising de-
coders [3, 4], belief-propagation, perfect weight-matching [5],
and union-find decoders.

Here, we concentrate on Calderbank-Shor-Steane (CSS)
codes [6, 7], .

II. MAXSAT FORMULATION OF THE DECODING
PROBLEM

In this section we will explain how to map the decoding
problem into a maximum satisfiability (MaxSAT) instance.
Firstly, we will briefly review a standard and widely used for-
mat of writing a MaxSAT problem, conjunctive normal form
(CNF). A k-SAT instance, is a specific case of a Boolean sat-
isfiability problem in which you are given a Boolean expres-
sion written in CNF form where each clause is constrained
to k literals. The table below summarises the important con-
cepts/convention that we will use later on.
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Boolean
Variables

In k-SAT, you deal with variables that
can take the values True or False.

Literals A literal is a variable or its negation.
For example, if xi is a variable, then xi
and ¬xi (not xi) are literals.

Clauses A clause is a disjunction (OR) of liter-
als. In k-SAT, each clause has exactly k
literals. For instance, (x1 ∨¬x2 ∨ x3) is
a 3-SAT clause.

Conjunctive
Normal Form
(CNF)

A Boolean formula is said to be in CNF
if it is a conjunction (AND) of clauses.
For example, (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨

x2 ∨ x3) is a CNF formula.
Satisfiability The k-SAT problem asks whether there

exists an assignment of True or False to
the variables such that the entire CNF
formula evaluates to True.

For a MaxSAT instance, one aims to find an assignment
of the variables such that it satisfies maximum number of
clauses.

In quantum error correction (QEC), the parity check matrix
of the QEC code, specifies which qubits can affect the state of
a detector. If we assign a binary variable to the connection be-
tween the qubits and the detectors, then the core of a decoding
problem is to match the parity of the product of these binary
variables to the measured syndrome. This task can naturally
be translated to a MaxSAT instance. There is some flexibil-
ity in formulating the problem as a MaxSAT instance, e.g. in
choice of the clause lengths. However, some mappings can be
much harder to solve for a typical SAT solver.

In the study of computational complexity, the clause den-
sity of a k-SAT problem is defined as the ratio of the number
of clauses m to the number of variables n, denoted by α = m

n .
The hardness phase transition for k-SAT problems is a criti-
cal concept, highlighting a threshold clause density at which
the problem transitions from being predominantly solvable to
predominantly unsolvable.

For different values of k, the critical clause density where
this phase transition occurs varies. For k = 2, the phase transi-
tion occurs at α ≈ 1.0. Problems with clause densities around
this value exhibit a sharp transition from likely satisfiable to
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likely unsatisfiable. For k = 3, the phase transition occurs at
α ≈ 4.2, a widely studied and critical threshold in the theory of
NP-completeness. For k = 4, the phase transition is observed
at α ≈ 9.9. Beyond this density, 4-SAT instances are generally
much harder to solve. These transitions are important in un-
derstanding the computational complexity and predictability
of SAT-solving algorithms under different conditions. They
provide a theoretical framework for expecting a sudden shift
in the solvability of the problems as the clause density crosses
these thresholds. For a detailed discussion see [8]. Therefore,
the critical clause density can have important implications on
whether it is feasible to use SAT solvers as QEC decoders and
which QEC codes would be ideal for these solvers.

Apart from the hardness phase transition as a factor to con-
sider in choosing the clause length, it is also important to note
that lower clause lengths are more desirable. This is due to the
fact that designing a hardware SAT solver for lower k values
is easier. In other words, you can think of a clause as a k-body
interaction term which has to be realised, in order to gain the
speedup in using fast hardware.

A. CNF Construction

Now we will explain the strategy to construct a CNF
MaxSAT problem for each round of syndrome measurement.

B. Error Probabilities as Soft Clause Weights

Most MaxSAT algorithms allow for introducing a weight
associated with each soft clause, which would be the cost
of violating that particular clause. On the other hand,
hard clauses are considered as infinite-weight clauses, which
means that even if one of the hard clauses is violated, the
solver has failed to find a satisfying assignment. As we men-
tioned above, in order to find the minimal solution (solution
with least number of errors), we can add the negation of each
of the error variables as a soft clause. Now, in order to further
advance the mapping, we can add a measure of the probabil-
ities associated with each error also as weights of these soft
clauses. This in principle turns the MaxSAT decoder into a
maximum likelihood decoder. More precisely, we are given a
set of errors E, each with probability pi and a set of detectors
D. Given occurred errors e ∈ E, the matrix H describes the
measured syndrome s ∈ S via s = He, where S is the list
of possible syndromes. Decoders such as minimum-weight
perfect matching (MWPM) demand that each error affects at
most two decoders, i.e. each column of H has at most two
non-zero entries. One important advantage of the maximum
likelihood decoders is that they do not suffer from this restric-

tion. The probability of a particular error occurring is given
by

P(e) =
∏

i

(1 − pi)1−ei pei
i =

∏
i

(1 − pi)
∏

i

(
pi

1 − pi

)ei

. (1)

To find the most probable error c given the measured syn-
drome s, we maximize

ln(P(c)) = C −
∑

i

wici (2)

s.t. s = Hc , (3)

where we have the irrelevant constant C =
∑

i ln(1 − pi) and
weights wi = ln((1 − pi)/pi) which represent the Bayesian
prior of our knowledge on the error probabilities. Maximis-
ing the loglikelihood in Eq. 2 would be equivalent to assign-
ing the wi weights to the soft clauses as violation cost to be
minimised.

III. CORRELATED DECODING

Commonly, in CSS codes the decoding of X and Z errors
is done separately. Here, an underlying assumption is that
X and Z errors are independent of each other. However, for
depolarizing error this is not the case as Y errors induce both
an X and Z error at the same time. The correct maximum
likelihood decoder must include these correlations. With the
MaxSAT decoders, these correlations can be easily included
into the decoding problem as we will explain in the following.

For depolarising error, we can assign separate literals to X
and Z errors and demand that both are decoded at the same
time. This will increase the size of the the decoding prob-
lem, but it is the correct strategy for depolarising error as men-
tioned above.

Y errors were accounted for in the formulation of Ref. [9].
However, their approach is restricted to the surface code,
while ours is completely generally for any CSS code.

IV. RESULTS AND DISCUSSION

In this section we present the improved scaling and er-
ror thresholds for our decoder in comparison to the BP-
OSD decoder which is the state of the art for the studied
codes. Solvers 2 to 5 represent various algorithms for solv-
ing MaxSAT instances. They all are integrated in our high
performance decoding package called OptiSync.
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TABLE I: Comparison of Error Thresholds (%) for MaxSAT and BP-OSD Decoders

Code Solver 2 Solver 3 Solver 4 Solver 5 BP-OSD
Toric Code (2D) 15.65 ± 0.34 5.57 ± 0.35 15.64 ± 0.33 15.67 ± 0.24 15.25 ± 0.51

Color Code (on hexagonal lattice) 15.26 ± 0.23 15.41 ± 0.20 15.36 ± 0.16 15.22 ± 0.16 13.37 ± 0.13

(a) Code distance 9 (b) Code distance 11

(c) Code distance 13 (d) Code distance 15

FIG. 1: The scaling of logical error rate with physical error rate for various solvers within OptiSync given with the relation
pL ∝ pαphys. These results are for the Toric 2D code.
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