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Introduction: Advancing efficient methodologies to characterize the behavior of quantum computers is
an endless pursuit in quantum science, with pivotal outcomes contributing to designing improved quantum
devices and identifying computational merits. In this context, quantum tomography [1, 2, 3] and classical
simulators [4, 5, 6] have been two standard approaches. Despite their advancements, (shadow) tomography-
based methods are quantum resources intensive, necessitating extensively interactive access to quantum
computers, and classical simulators are confined to handling specific classes of quantum states. Accordingly,
there is a pressing need for innovative approaches to effectively uncover the dynamics of modern quantum
computers with hundreds or thousands of qubits [7, 8]. Recently, machine learning (ML) has emerged
as a leading candidate toward this goal [9]. Distinct from prior purely classical or quantum methods,
ML-based approaches synergy the power of classical learners and quantum computers. Empirical studies
have showcased the superiority of ML compared to traditional methods in many substantial tasks, such
as real-time feedback control of quantum systems [10, 11], correlations and entanglement quantification
[12, 13], and enhancement of quantum algorithms [14, 15]. However, in contrast to the empirical successes,
the theoretical foundation of these ML-based methods holds far-reaching consequences, where rigorous
performance guarantees or scaling results remain unknown. A pivotal and elusive question in the field is:

Can we design a provably efficient learning model for predicting the dynamics of large-qubit circuits?

The goal of this work is to answer the above question under a practical scenario. That is, we consider a
wide class of quantum circuits featuring bounded-gates with incoherent measurements. The focus on this
setting stems from their extensive relevance in early-stage quantum computing, including practical utility
identification [7], variational quantum algorithms [16], and quantum system certification [17]. As a result,
any progress on this front would enhance our confidence to utilize ML to comprehend large-qubit devices.

Problem setup: Early-stage quantum computers share several common features, including a large qubit
count, a bounded gate number, and incoherent and local measurements. In consideration of these traits,
the behavior of early-stage quantum computers can be encapsulated within a unified model. Particularly,
the state space associated to an N -qubit quantum circuit with a bounded-gate number G yields Q ={

ρ(x) = U(x)ρ0U(x)†
∣∣∣x ∈ [−π, π]d

}
, where ρ0 denotes an N -qubit state and U(x) refers to the bounded-

gate quantum circuit depending on the classical input x with d dimensions. Due to the universality of
Clifford gates with RZ gates [18], the bounded-gate quantum circuit can always be expressed as U(x) =∏d

l=1(RZ(xl)ue), where ue is composed of Clifford (abbreviated as CI) gates and the identity gate I2 with
CI = {H, S, CNOT}. When ρ(x) ∼ Q is measured by O, an observable sampled from a prior distribution
DO, its incoherent dynamics are described the mean-value space

F =
{

f(x, O) = Tr(ρ(x)O)
∣∣∣x ∈ [−π, π]d, O ∼ DO

}
. (1)

Without loss of generality, we suppose O is constituted by multiple local observables with a bounded norm,
i.e., O =

∑q
i=1 Oi and

∑
l ∥Oi∥∞ ≤ B, and the maximum locality of {Oi} is K. This formalism encom-

passes diverse tasks in quantum computing, e.g., variational quantum algorithms, numerous applications
of classical shadow, and quantum system certification.

According to the unified model formulated above, here we explore the learnability of F in Eq. (1) by
separately assessing the required sample complexity and runtime complexity of training a classical learner
h(x, O) that attains a low average prediction error with f(x, O). Mathematically, denoting DX as the data
distribution, the average performance of the learner is expected to satisfy

Ex∼DX |h(x, O) − f(x, O)|2 ≤ ϵ, ∀O ∼ DO. (2)
∗The technical version of the submission is also attached.
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Figure 1: Learning protocols for quantum circuits with the bounded number of gates. (a) Given a
circuit composed of finite Clifford gates and RZ gates, a classical learner feeds n classical inputs, i.e., n tuples of
the varied angles of RZ gates, to the quantum device and collects the relevant measured results as data labels. The
collected n labeled data are used to train a prediction model h such that the linear properties of the generated state
over new input x, i.e., Tr(ρ(x)O) with O being an observable sampling from a prior distribution, can be accurately
estimated. (b) First, the learner collects the training dataset, i.e., n labeled data via classical shadow. Then, the
learner applies shadow estimation and the trigonometric monomial expansion to the collected dataset to obtain
classical representations, where any new input of the explored quantum circuits can be efficiently predicted offline.

Remark. Our analysis adheres to the conventions of most ML algorithms to train h(x, O). Namely, as
shown in Fig. 1(a), to accommodate the constraints of modern quantum devices, the training data are
exclusively gathered by simple measurements [19]. In addition, the classical learner is kept unaware of
the circuit layout details, except for the gate count G and the dimension of classical controls d, and can
solely access estimated information about quantum states through finite and incoherent measurements.
Last, considering the scarce and costly nature of modern quantum computers, the preferred mode for the
prediction model h(x, O) is offline, enabling predictions for new inputs x solely on the classical side.
Overview of main results: Our main results consist of two parts: (♣) Analyzing the learnability of
bounded-gate quantum circuits F in terms of the sample and runtime complexities; and (♠) Devising a
provably efficient protocol to learn F when x is sampled from the uniform distribution. Concretely, for
Outcome (♣), our analysis uncovers that (i) with high probability, the sample complexity scaling linearly
in d is necessary and sufficient to achieve a small prediction error on average, while the corresponding
computational complexity may scale exponentially in d. The exponential separation of the sample and
computational complexity pinpoints the importance of crafting provably efficient algorithms to learn F in
Eq. (1). To address this issue, in Outcome (♠), we harness the concept of classical shadow and truncated
trigonometric expansion to devise a kernel-based learning model capable of trading off prediction error and
computational complexity, transitioning from exponential to polynomial scaling in many practical settings
when DX in Eq. (2) is restricted to be the uniform distribution, i.e., x ∼ [−π, π]d. These results advance
two crucial realms in quantum computation: the exploration of quantum algorithms with practical utilities
and learning-based quantum system certification. In the rest of this extended abstract, we elaborate on
outcomes (♣) and (♠) and their implications.
■ Outcome (♣) is obtained by the following theorem.

Theorem 1 (informal) Following notations in Eq. (1), let T = {x(i), f̃T (x(i))}n
i=1 be a dataset containing

n training examples with x(i) ∈ [π, π]d and f̃T (x(i)) being the estimation of f(x(i), O) using T incoherent
measurements with T ≤ (N log 2)/ϵ. Then, the training data size Ω̃

(
(1−ϵ)d

ϵT

)
≤ n ≤ Õ

(
B2d+B2NG

ϵ

)
is

sufficient and necessary to achieve Eq. (2) with high probability. However, there exists a class of G-
bounded-gate quantum circuits that no algorithm can achieve Eq. (2) in a polynomial time.

The implications of Theorem 1 are summarized below.
• The exponential separation in terms of the sample and computational complexities underscores the non-
trivial nature of learning the incoherent dynamics of bounded-gate quantum circuits. That is, while a
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linear number of training examples with d is sufficient and necessary to guarantee a satisfactory prediction
accuracy, identifying these training examples may be computationally hard.
• Our finding also aligns with a recent study exploring the learnability of quantum states with bounded-gate
complexity, which, like our case, is sample-efficient but computationally demanding [20].
■ Outcome (♠). Our proposal, as depicted in Fig. 1(b), contains two steps: (i) Collect training data
from the exploited quantum device; (ii) Construct the learning model and use it to predict new inputs. In
Step (i), the learner feeds different x(i) ∈ [−π, π]d to the circuit and collects classical information of ρ(x(i))
under Pauli-based classical shadow with T snapshots [21], denoted by ρ̃T (x(i)). In this way, the learner
constructs the training dataset Ts = {x(i) → ρ̃T (x(i))}n

i=1 with n training examples. Then, in Step (ii), the
learner utilizes Ts to build a kernel-based ML model hs, i.e., given a new input x, its prediction yields

hs(x, O) = 1
n

n∑
i=1

κΛ
(
x,x(i)

)
g

(
x(i), O

)
, (3)

where g(x(i), O) = Tr(ρ̃T (x(i))O) refers to the shadow estimation of Tr(ρ(x(i))O), κΛ(x,x(i)) is the trun-
cated trigonometric monomial kernel with κΛ

(
x,x(i)

)
=

∑
ω,∥ω∥0≤Λ 2∥ω∥0Φω(x)Φω

(
x(i)

)
∈ R, and Φω(x)

with ω ∈ {0, 1, −1}d is the trigonometric monomial basis with values Φω(x) =
∏d

i=1

{
1 if ωi = 0
cos(xi) if ωi = 1
sin(xi) if ωi = −1

. The sub-

sequent theorem provides a provable guarantee for the proposed method.

Theorem 2 (Informal) Following notations in Eqs. (1)-(3), denote C(Λ) = {ω|ω ∈ {0, ±1}d, s.t. ∥ω∥0 ≤
Λ}. Suppose Ex∼[−π,π]d∥∇x Tr(ρ(x)O)∥2

2 ≤ C. Then, when the frequency is truncated to Λ = 4C/ϵ and the
number of training examples is n = |C(Λ)|2B29Kϵ−1 log(2|C(Λ)|/δ), even for T = 1 snapshot per training
example, with probability at least 1 − δ, Ex∼[−π,π]d |hs(x, O) − f(ρ(x), O)|2 ≤ ϵ.

(a)

(b)

Figure 2: Predicting properties of
rotational 60-qubit GHZ states. (a)
The root mean squared (RMS) prediction
error of the trained ML model with var-
ied truncation Λ and number of training
examples n. (b) The RMS prediction er-
ror of the trained ML model with varied
truncation Λ and shot number T .

The implications of Theorem 2 are as follows.
• Both sample and computational complexities of hs are dominated by
the cardinality of C(Λ), or equivalently the quantity C as Λ = 4C/ϵ.
Notably, the quantity C, in many practical scenarios, can be ef-
fectively bounded. One such scenario involves the advancement of
variational quantum algorithms (VQAs) [16, 22, 23], as recent stud-
ies have shown that the gradients norm of numerous VQAs yields
C ≤ 1/poly(N) [24] or C ≤ 1/exp(N), a.k.a, barren plateaus [25, 26].
• The exponential dependence of the locality K arises from the use
of Pauli-based classical shadow in hs. A potential solution to address
this issue is adopting advanced variants of classical shadow to enhance
the sample complexity bounds [27, 28].
• Our proposal and the relevant theoretical findings can be effectively
extended to a broader context, i.e., the bounded-gate circuits com-
posed of CI gates alongside parameterized multi-qubit gates generated
by arbitrary Pauli strings.
■ Numerical results. We apply the proposed ML model to predict
the properties of N -qubit rotational GHZ states with |GHZ(x)⟩ =
U(x)(|0⟩⊗N + |1⟩⊗N )/

√
2, where U(x) = RY1(x1) ⊗ RY30(x2) ⊗

RY60(x3), the subscript j refers to apply RY gate to the j-th qubit,
and N = 60. At the training stage, we constitute the dataset Ts con-
taining n = 30 examples. Here we exploit how the prediction error
depends on the truncation value Λ, the number of training examples
n, and the shot number T . Fig. 2(a) showcases that when T = 1000
and the training data are sufficient (i.e., n ≥ 500), the root mean
squared (RMS) prediction error on 10 unseen test examples is almost the same for the full expansion (i.e.,
Λ = 3) and the proper truncation (i.e., Λ = 2). Besides, Fig. 2(b) indicates that when n = 500, the
prediction error on the same test examples reaches a low value for both Λ = 3 and Λ = 2 once the shot
number T exceeds a threshold value (T ≥ 50). These results are consistent with our theoretical analysis.
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Ana Predojević, and Miroslav Ježek. Deep learning of quantum entanglement from incomplete mea-
surements. Science Advances, 9(29):eadd7131, 2023.

[14] Elizabeth R Bennewitz, Florian Hopfmueller, Bohdan Kulchytskyy, Juan Carrasquilla, and Pooya
Ronagh. Neural error mitigation of near-term quantum simulations. Nature Machine Intelligence,
4(7):618–624, 2022.

[15] Shi-Xin Zhang, Zhou-Quan Wan, Chee-Kong Lee, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao.
Variational quantum-neural hybrid eigensolver. Physical Review Letters, 128(12):120502, 2022.

[16] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii,
Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum algorithms.
Nature Reviews Physics, 3(9):625–644, 2021.

4



[17] Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea Parekh, Ulysse
Chabaud, and Elham Kashefi. Quantum certification and benchmarking. Nature Reviews Physics,
2(7):382–390, 2020.

[18] Neil J Ross and Peter Selinger. Optimal ancilla-free clifford+ t approximation of z-rotations. arXiv
preprint arXiv:1403.2975, 2014.

[19] Yuxuan Du, Yibo Yang, Tongliang Liu, Zhouchen Lin, Bernard Ghanem, and Dacheng Tao. Shadownet
for data-centric quantum system learning. arXiv preprint arXiv:2308.11290, 2023.

[20] Haimeng Zhao, Laura Lewis, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang, and Matthias C Caro.
Learning quantum states and unitaries of bounded gate complexity. arXiv preprint arXiv:2310.19882,
2023.

[21] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
system from very few measurements. Nature Physics, 16(10):1050–1057, 2020.

[22] Jinkai Tian, Xiaoyu Sun, Yuxuan Du, Shanshan Zhao, Qing Liu, Kaining Zhang, Wei Yi, Wanrong
Huang, Chaoyue Wang, Xingyao Wu, et al. Recent advances for quantum neural networks in generative
learning. arXiv preprint arXiv:2206.03066, 2022.

[23] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav
Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy
intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1):015004, 2022.
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The vast and complicated large-qubit state space forbids us to comprehensively capture the dy-
namics of modern quantum computers via classical simulations or quantum tomography. However,
recent progress in quantum learning theory invokes a crucial question: given a quantum circuit
containing 𝑑 tunable RZ gates and 𝐺 − 𝑑 Clifford gates, can a learner efficiently predict its linear
properties with new classical controls, after learning from data obtained by incoherently measur-
ing states generated by the same circuit but with different classical controls? In this work, we
prove that the sample complexity scaling linearly in 𝑑 is necessary and sufficient to achieve a small
prediction error, while the corresponding computational complexity may scale exponentially in 𝑑.
Building upon these derived complexity bounds, we further harness the concept of classical shadow
and truncated trigonometric expansion to devise a kernel-based learning model capable of trading
off prediction error and computational complexity, transitioning from exponential to polynomial
scaling in many practical settings. Our results advance two crucial realms in quantum computation:
the exploration of quantum algorithms with practical utilities and learning-based quantum system
certification. We conduct numerical simulations to validate our proposals across diverse scenarios,
encompassing quantum information processing protocols, Hamiltonian simulation, and variational
quantum algorithms up to 60 qubits.

I. INTRODUCTION

Advancing efficient methodologies to characterize the behavior of quantum computers is an endless pursuit in
quantum science, with pivotal outcomes contributing to designing improved quantum devices and identifying compu-
tational merits. In this context, quantum tomography and classical simulators have been two standard approaches.
Quantum tomography, spanning state [1], process [2, 3], and shadow tomography [4, 5], provides concrete ways to
benchmark current quantum computers. Classical simulators, transitioning from state-vector simulation to tensor
network methods [6–9] and Clifford-based simulators [10–12], not only facilitate the design of quantum algorithms
without direct access to quantum resources [13] but also push the boundaries to unlock practical utilities [14]. Despite
their advancements, (shadow) tomography-based methods are quantum resources intensive, necessitating extensively
interactive access to quantum computers, and classical simulators are confined to handling specific classes of quantum
states. Accordingly, there is a pressing need for innovative approaches to effectively uncover the dynamics of modern
quantum computers with hundreds or thousands of qubits [15, 16].

Machine learning (ML) is fueling a new paradigm for comprehending quantum computers [17]. This hybrid ap-
proach, distinct from prior purely classical or quantum methods, synergies the power of classical learners and quantum
computers. Concisely, it begins by collecting samples from target quantum devices to train a classical learner, and
then uses the trained learner to predict unseen data from the same data distribution without direct access to quantum
computers or by utilizing few quantum resources. Empirical studies have showcased the superiority of ML compared
to traditional methods in many substantial tasks, such as real-time feedback control of quantum systems [18–21],
correlations and entanglement quantification [22–24], and enhancement of quantum algorithms [25–28]. However, in
contrast to the empirical successes, the theoretical foundation of these ML-based methods holds far-reaching conse-
quences, where rigorous performance guarantees or scaling results remain unknown. A pivotal and elusive question
in the field is:

can we design a provably efficient learning algorithm for predicting the dynamics of large-qubit quantum circuits?

Any progress on this front would enhance our confidence to utilize ML to comprehend large-qubit devices.
Here we answer the above question affirmatively for a wide class of quantum circuits featuring bounded-gates

with incoherent measurements. The focus on these quantum circuits stems from their extensive relevance in early-
stage quantum computing, including applications such as practical utility identification [15], variational quantum
algorithms [29], and quantum system certification [30]. Concretely, we first explore the learnability of a class of
𝑁 -qubit quantum circuits, which consists of an arbitrary initial state, a unitary composed of 𝑑 tunable RZ gates
and 𝐺 − 𝑑 Clifford gates, followed by an incoherent measure operator 𝑂. Our analysis uncovers that (i) with high

probability, ̃︀Ω( (1−𝜖)𝑑𝜖𝑇 ) ≤ 𝑛 ≤ ̃︀𝒪(𝐵
2𝑑+𝐵2𝑁𝐺

𝜖2 ) training examples are sufficient and necessary to achieve an 𝜖-prediction
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Figure 1: Learning protocols for quantum circuits with the bounded number of non-Clifford gates. (a) The vi-
sualization of learning bounded-gate quantum circuits with incoherent measurements. Given a circuit composed
of finite Clifford gates and RZ gates, a classical learner feeds 𝑛 classical inputs, i.e., 𝑛 tuples of the varied angles of RZ gates,
to the quantum device and collects the relevant measured results as data labels. The collected 𝑛 labeled data are used to train
a prediction model ℎ such that the linear properties of the generated state over new input 𝑥, i.e., Tr(𝜌(𝑥)𝑂) with 𝑂 being
an observable sampling from a prior distribution, can be accurately estimated. Following conventions, the interaction between
the learner and the system is restrictive in which the learner can only access the quantum computer via incoherent and finite
measurements, and the circuit layout is unnecessarily available to the learner except for the number of total gates 𝐺 and the
number of tunable RZ gates 𝑑. (b) The proposed kernel-based ML model consists of two steps. First, the learner
collects the training dataset, i.e., 𝑛 labeled data via classical shadow. Then, the learner applies shadow estimation and the
trigonometric monomial expansion to the collected training dataset to obtain efficient classical representations, where any new
input of the explored quantum circuits can be efficiently predicted offline.

error on average, where 𝐵 refers to the bounded norm of 𝑂 and 𝑇 is the number of incoherent measurements; (ii) there
exists a class of 𝐺-bounded-gate quantum circuits that no polynomial runtime algorithms can predict their outputs
within an 𝜖-prediction error. These results not only enrich the landscape of quantum learning theory by shedding
light on the learnability of quantum circuits, but also invoke the necessity of developing a learning algorithm capable
of addressing the exponential gap between sample efficiency and computational complexity.

To address the above computational challenge, we further utilize the concepts of classical shadow [31] and trigono-
metric expansion to design a kernel-based ML model that effectively balances prediction accuracy with computational
demands. We prove that when the classical inputs are sampled from the uniform distribution, with high probability,

the runtime and memory cost of the proposed ML model is no larger than ̃︀𝒪(𝑇𝑁𝐵2𝑐/𝜖) for a large constant 𝑐 to
achieve an 𝜖 prediction error in many practical scenarios. Our proposed algorithm paves a new way of predicting the
dynamics of large-qubit quantum circuits in a provably efficient manner.

II. LEARNABILITY OF BOUNDED-GATE QUANTUM CIRCUITS

Early-stage quantum computers share several common features, including a large qubit count, a bounded gate
number, and incoherent and local measurements. In consideration of these traits, the behavior of early-stage quantum
computers can be encapsulated within a unified model. Particularly, the state space associated to an 𝑁 -qubit quantum
circuit with a bounded-gate number 𝐺 yields

𝒬 =
{︁
𝜌(𝑥) = 𝑈(𝑥)𝜌0𝑈(𝑥)†

⃒⃒⃒
𝑥 ∈ [−𝜋, 𝜋]𝑑

}︁
, (1)

where 𝜌0 denotes an 𝑁 -qubit state and 𝑈(𝑥) refers to the bounded-gate quantum circuit depending on the classical
input 𝑥 with 𝑑 dimensions. Due to the universality of Clifford gates with RZ gates [32], the bounded-gate quantum
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circuit can always be expressed as

𝑈(𝑥) =

𝑑∏︁
𝑙=1

(RZ(𝑥𝑙)𝑢𝑒), (2)

where 𝑢𝑒 is composed of Clifford (abbreviated as CI) gates and the identity gate I2 with CI = {𝐻,𝑆,CNOT}. When
the state 𝜌(𝑥) ∼ 𝒬 is measured by an observable 𝑂 sampled from a prior distribution D𝑂, its incoherent dynamics
are described the mean-value space

ℱ =
{︁
𝑓(𝑥, 𝑂) = Tr(𝜌(𝑥)𝑂)

⃒⃒⃒
𝑥 ∈ [−𝜋, 𝜋]𝑑, 𝑂 ∼ D𝑂

}︁
. (3)

Without loss of generality, we suppose 𝑂 is constituted by multiple local observables with a bounded norm, i.e.,
𝑂 =

∑︀𝑞
𝑖=1𝑂𝑖 and

∑︀
𝑙 ‖𝑂𝑖‖∞ ≤ 𝐵, and the maximum locality of {𝑂𝑖} is 𝐾. This formalism encompasses diverse tasks

in quantum computing, e.g., variational quantum algorithms [29], numerous applications of classical shadow [33], and
quantum system certification [30] (see Supplementary Material (SM) A for the elaboration).

According to the unified model formulated above, here we explore the learnability of ℱ in Eq. (3) by separately
assessing the required sample complexity and runtime complexity of training a classical learner ℎ(𝑥, 𝑂) that attains
a low average prediction error with 𝑓(𝑥, 𝑂). Mathematically, the average performance of the learner is expected to
satisfy

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− 𝑓(𝑥, 𝑂)|2 ≤ 𝜖, ∀𝑂 ∼ D𝑂, (4)

where the classical control 𝑥 is uniformly sampled from [−𝜋, 𝜋]𝑑. Note that our analysis adheres to the conventions
of most ML algorithms to train ℎ(𝑥, 𝑂). Namely, as shown in Fig. 1(a), to accommodate the constraints of modern
quantum devices, the training data are exclusively gathered by simple measurements [27]. In addition, the classical
learner is kept unaware of the circuit layout details, except for the gate count 𝐺 and the dimension of classical controls
𝑑, and can solely access estimated information about quantum states through finite and incoherent measurements.
Last, considering the scarce and costly nature of modern quantum computers, the preferred mode for the prediction
model ℎ(𝑥, 𝑂) is offline, enabling predictions for new inputs 𝑥 solely on the classical side.
The following theorem demonstrates the learnability of ℱ in Eq. (3), where the formal statement and the proof are

presented in SM B-E.

Theorem 1 (informal). Following notations in Eq. (3), let 𝒯 = {𝑥(𝑖), 𝑓𝑇 (𝑥
(𝑖))}𝑛𝑖=1 be a dataset containing 𝑛 training

examples with 𝑥(𝑖) ∈ [𝜋, 𝜋]𝑑 and 𝑓𝑇 (𝑥
(𝑖)) being the estimation of 𝑓(𝑥(𝑖), 𝑂) using 𝑇 incoherent measurements with

𝑇 ≤ (𝑁 log 2)/𝜖. Then, the training data size

̃︀Ω(︂ (1− 𝜖)𝑑

𝜖𝑇

)︂
≤ 𝑛 ≤ ̃︀𝒪(︂𝐵2𝑑+𝐵2𝑁𝐺

𝜖

)︂
(5)

is sufficient and necessary to achieve Eq. (4) with high probability. However, there exists a class of 𝐺-bounded-gate
quantum circuits that no algorithm can achieve Eq. (4) in a polynomial time.

The exponential separation in terms of the sample and computational complexities underscores the non-trivial
nature of learning the incoherent dynamics of bounded-gate quantum circuits. While the matched upper and lower
bounds in Eq. (5) indicate that a linear number of training examples with 𝑑 is sufficient and necessary to guarantee a
satisfactory prediction accuracy, the derived exponential runtime cost hints that identifying these training examples
may be computationally hard. These results enrich quantum learning theory [34, 35], especially for the learnability
of quantum circuits. Our finding also aligns with a recent study exploring the learnability of quantum states with
bounded-gate complexity, which, like our case, is sample-efficient but computationally demanding [36]. We note that
the upper bound does not depend non-trivially on 𝑇 , so we omit it. Besides, our future work will explore novel
techniques to match the factors 𝑁 , 𝐵, and 𝐺 in the lower and upper bounds, whereas such deviations do not affect
our key results.

III. A PROVABLY EFFICIENT PROTOCOL TO LEARN BOUNDED-GATE QUANTUM CIRCUITS

The exponential separation of the sample and computational complexity pinpoints the importance of crafting prov-
ably efficient algorithms to learn ℱ in Eq. (3). To address this issue, here we devise a kernel-based ML protocol adept
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(a) (b)

(c)

Figure 2: Numerical results of predicting properties of rotational 60-qubit GHZ states. (a) Two-point corre-
lation. Exact values and ML predictions of the expectation value of the correlation function 𝐶𝑖𝑗 = (𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗 + 𝑍𝑖𝑍𝑗)/3
for all qubit pairs of 60-qubit GHZ states. The node’s color indicates the exact value and predicted value of the two subplots,
respectively. (b-c) Prediction error. Subplot (b) depicts the root mean squared (RMS) prediction error of the trained ML
model with varied truncation Λ and number of training examples 𝑛. Subplot (c) shows the RMS prediction error of the trained
ML model with varied truncation Λ and the shot number 𝑇 . The setting Λ = 3 refers to the full expansion.

at balancing the average prediction error 𝜖 and the computational complexity, making a transition from exponential
to polynomial scaling with 𝑑 when D𝒳 is restricted to be the uniform distribution, i.e., 𝑥 ∼ [−𝜋, 𝜋]𝑑.
Our proposal, as depicted in Fig. 1(b), contains two steps: (i) Collect training data from the exploited quantum

device; (ii) Construct the learning model and use it to predict new inputs. In Step (i), the learner feeds different
𝑥(𝑖) ∈ [−𝜋, 𝜋]𝑑 to the circuit and collects classical information of 𝜌(𝑥(𝑖)) under Pauli-based classical shadow with 𝑇
snapshots, denoted by 𝜌𝑇 (𝑥

(𝑖)). In this way, the learner constructs the training dataset 𝒯s = {𝑥(𝑖) → 𝜌𝑇 (𝑥
(𝑖))}𝑛𝑖=1

with 𝑛 training examples. Then, in Step (ii), the learner utilizes 𝒯s to build a kernel-based ML model ℎs, i.e., given a
new input 𝑥, its prediction yields

ℎs(𝑥, 𝑂) =
1

𝑛

𝑛∑︁
𝑖=1

𝜅Λ

(︁
𝑥,𝑥(𝑖)

)︁
𝑔
(︁
𝑥(𝑖), 𝑂

)︁
, (6)

where 𝑔(𝑥(𝑖), 𝑂) = Tr(𝜌𝑇 (𝑥
(𝑖))𝑂) refers to the shadow estimation of Tr(𝜌(𝑥(𝑖))𝑂), 𝜅Λ(𝑥,𝑥

(𝑖)) is the truncated trigono-
metric monomial kernel with

𝜅Λ

(︁
𝑥,𝑥(𝑖)

)︁
=

∑︁
𝜔,‖𝜔‖0≤Λ

2‖𝜔‖0Φ𝜔(𝑥)Φ𝜔

(︁
𝑥(𝑖)

)︁
∈ R, (7)

and Φ𝜔(𝑥) with 𝜔 ∈ {0, 1,−1}𝑑 is the trigonometric monomial basis with values

Φ𝜔(𝑥) =

𝑑∏︁
𝑖=1

⎧⎪⎨⎪⎩
1 if 𝜔𝑖 = 0

cos(𝑥𝑖) if 𝜔𝑖 = 1

sin(𝑥𝑖) if 𝜔𝑖 = −1

. (8)

A distinctive aspect of our proposal is its capability to predict the incoherent dynamics Tr(𝜌(𝑥)𝑂) across various
𝑂 purely on the classical side. This is achieved by storing the shadow information {𝜌𝑇 (𝑥(𝑖))} into the classical
memory, where the shadow estimation {𝑔(𝑥(𝑖), 𝑂)} for different {𝑂} can be efficiently manipulated through classical
post-processing.

With the full expansion, the cardinality of the frequency set {𝜔} in Eq. (7) is 3𝑑 when Λ = 𝑑, impeding the
computational efficiency of our proposal. To remedy this, judicious frequency truncation is necessary to strike a balance
between prediction error and computational complexity. The subsequent theorem provides a provable guarantee for
this tradeoff relation, with the formal description and proof deferred to SM F.

Theorem 2 (Informal). Following notations in Eqs. (3)-(6), denote C(Λ) = {𝜔|𝜔 ∈ {0,±1}𝑑, 𝑠.𝑡. ‖𝜔‖0 ≤ Λ}.
Suppose E𝑥∼[−𝜋,𝜋]𝑑‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 ≤ 𝐶. Then, when the frequency is truncated to Λ = 4𝐶/𝜖 and the number
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(a) (b)

Figure 3: Numerical results of predicting properties of quantum states evolved by 60-qubit global Hamiltonians.
(a) Prediction on the evolved state with 𝑑 = 1. The notation 𝑛 = 𝑎 refers that the number of training examples used
to form the classical representation is 𝑎. The y-axis denotes the magnetization ⟨𝑍⟩ = 1

60

∑︀
𝑖 ⟨𝑍𝑖⟩. (b) Prediction error on

the evolved state with 𝑑 = 30 with different sizes of the training dataset. The meaning of notations in the box
plot is as follows. The label ‘Λ = 𝑎’ stands for that the truncation value is set as 𝑎. The 𝑥-axis refers to the varied number of
training examples 𝑛, ranging from 𝑛 = 10 to 𝑛 = 104. The 𝑦-axis refers to the achieved RMS prediction error. All results are
obtained using the same random seeds.

of training examples is 𝑛 = |C(Λ)|2𝐵29𝐾𝜖−1 log(2|C(Λ)|/𝛿), even for 𝑇 = 1 snapshot per training example, with
probability at least 1− 𝛿,

E𝑥∼[−𝜋,𝜋]𝑑 |ℎs(𝑥, 𝑂)− 𝑓(𝜌(𝑥), 𝑂)|2 ≤ 𝜖. (9)

The obtained results reveal that both sample and computational complexities of ℎs are predominantly influenced by
the cardinality of C(Λ), or equivalently the quantity 𝐶 as Λ = 4𝐶/𝜖. That is a polynomial scaling of |C(Λ)| with 𝑁
and 𝑑 can ensure both a polynomial runtime cost to obtain 𝜅Λ(𝑥,𝑥

(𝑖))𝑔(𝑥(𝑖), 𝑂) and a polynomial sample complexity
𝑛, leading to an overall polynomial computational complexity of our proposal (see SM G for details). In contrast, for
an unbounded 𝐶 such that |C(Λ)| exponentially scales with 𝑑, the computational overhead of ℎs becomes prohibitive
for a large 𝑑, aligning with the observations from Theorem 1.
We next underscore that in many practical scenarios, the quantity 𝐶 can be effectively bounded, allowing the

proposed ML model to serve as a valuable complement to quantum tomography and classical simulations in com-
prehending quantum devices. One such scenario involves characterizing near-Clifford quantum circuits consisting of
many CI gates and few non-Clifford gates, which find applications in quantum error correction [37, 38] and efficient
implementation of approximate t-designs [39]. In this context, adopting the full expansion with Λ = 𝑑 is also com-
putationally efficient, as |C(𝑑)| ∼ 𝑂(𝑁). Meanwhile, when focused on a specific class of quantum circuits described
as CI+RZ with a fixed layout, our model surpasses classical simulation methods [40, 41] in runtime complexity by
eliminating the dependence on the number of Clifford gates 𝐺− 𝑑.

Another scenario involves the advancement of variational quantum algorithms (VQAs) [29, 42, 43], a leading candi-
date of leveraging near-term quantum computers for practical utility in machine learning [44], quantum chemistry, and
combinatorial optimization [45]. Recent studies have shown that in numerous VQAs, the gradients norm of trainable
parameters yields 𝐶 ≤ 1/poly(𝑁) [46–49] or 𝐶 ≤ 1/exp(𝑁), a.k.a, barren plateaus [50–53]. These insights, coupled
with the results in Theorem 2, suggest that our model can be used to pretrain VQA algorithms on the classical
side to obtain effective initialization parameters before quantum computer execution, preserving access to quantum
resources [54, 55]. Theoretically, our model broadens the class of VQAs amenable to classical simulation, pushing the
boundaries of achieving practical utility with VQAs [56, 57].

Last, the complexity bound in Theorem 2 hints that the locality of the observable 𝐾 is another factor dominating
the performance of ℎs. This exponential dependence arises from the use of Pauli-based classical shadow, and two
potential solutions can be employed to alleviate this influence. The first solution involves adopting advanced variants
of classical shadow to enhance the sample complexity bounds [58–61]. The second solution entails utilizing classical
simulators to directly compute the quantity {Tr(𝜌(𝑥(𝑖))𝑂)} instead of shadow estimation {𝑔(𝑥(𝑖), 𝑂)} in Eq. (6), with
the sample complexity summarized in the following corollary.
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Corollary 1 (Informal). Following notations in Theorem 2, when {Tr(𝜌(𝑥(𝑖))𝑂)}𝑖 are computed by classical simulators

and 𝑛 ∼ ̃︀𝒪(3𝑑𝐵2𝑑/𝜖), with high probability, the average prediction error is upper bounded by 𝜖.

Although using the classical simulators can improve the dependency of the locality of observable and remove the
necessity of quantum resources, the price to pay is increasing the computational overhead and only restricting to a
small constant 𝑑. Refer to SM H for the proofs, implementation details, and more discussions.
Remark. For clarity, we concentrate on illustrating how the proposed ML model applied to the bounded-gate circuits
comprising CI gates alongside RZ gates. In SM I, we illustrate that our proposal and the relevant theoretical findings
can be effectively extended to a broader context, i.e., the bounded-gate circuits composed of CI gates alongside
parameterized multi-qubit gates generated by arbitrary Pauli strings.

IV. NUMERICAL RESULTS

We conduct numerical simulations on 60-qubit quantum circuits to assess the efficacy of the proposed ML model.
The omitted details, as well as the demonstration of classically optimizing VQAs with smaller qubit sizes, are provided
in SM J.

We first use the proposed ML model to predict the properties of rotational GHZ states. Mathematically, we

define an 𝑁 -qubit rotational GHZ states with 𝑁 = 60 as |GHZ(𝑥)⟩ = 𝑈(𝑥)(|0⟩⊗𝑁 + |1⟩⊗𝑁 )/
√
2, where 𝑈(𝑥) =

RY1(𝑥1)⊗RY30(𝑥2)⊗RY60(𝑥3) and the subscript 𝑗 refers to apply RY gate to the 𝑗-th qubit. At the training stage,
we constitute the dataset 𝒯𝑠 containing 𝑛 = 30 examples, where each example is obtained by uniformly sampling 𝑥
from [−𝜋, 𝜋]3 and applying classical shadow to |GHZ(𝑥)⟩ with the shot number 𝑇 = 1000.
The first subtask is predicting a two-point correlation function, i.e., the expectation value of 𝐶𝑖𝑗 = (𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗 +

𝑍𝑖𝑍𝑗)/3 for each pair of qubits (𝑖, 𝑗), at new values of 𝑥. To do so, the proposed ML model leverages 𝒯𝑠 to form
the classical representations with Λ = 3 and exploits these representations to proceed with prediction at 𝑥. Fig. 2(a)
depicts the predicted and actual values of the correlation function for a particular value of 𝑥, showing reasonable
agreement. The second subtask is exploiting how the prediction error depends on the truncation value Λ, the number
of training examples 𝑛, and the shot number 𝑇 . Fig. 2(b) showcases that when 𝑇 = 1000 and the training data are
sufficient (i.e., 𝑛 ≥ 500), the root mean squared (RMS) prediction error on 10 unseen test examples is almost the
same for the full expansion (i.e., Λ = 3) and the proper truncation (i.e., Λ = 2). Besides, Fig. 2(c) indicates that
when 𝑛 = 500, the prediction error on the same test examples reaches a low value for both Λ = 3 and Λ = 2 once the
shot number 𝑇 exceeds a threshold value (𝑇 ≥ 50). These results are consistent with our theoretical analysis.
We next apply the proposed ML model to predict properties of the state evolved by a global Hamiltonian H =

𝐽1⊗𝑁𝑖=1𝑍𝑖+
∑︀𝑁
𝑖=1𝑋𝑖, where 𝐽1 is a predefined constant and 𝑁 is the qubit count with 𝑁 = 60. The initial state is fixed

to be |0⟩⊗𝑁 and the circuit 𝑈(𝑥) is the Trotterized time evolution of H. By properly selecting the evolution time at each

Trotter step and 𝐽1, the Trotterized time-evolution circuit takes the form as 𝑈(𝑥) =
∏︀𝑑
𝑗=1(𝑒

−𝚤𝑥𝑗⊗𝑁
𝑖=1𝑍𝑖⊗𝑁𝑖=1RX(𝜋/3)).

We consider two settings of the total number of Trotter steps, i.e., 𝑑 = 1 and 𝑑 = 30. For both cases, at the training
stage, we constitute the dataset 𝒯s following the same rule presented in the last simulation. The only difference is the
dataset size and the shot number, which is 𝑛 = 20 and 𝑇 = 500 in the former case, and 𝑛 = 50000 and 𝑇 = 50 in the
latter case.

The first subtask is predicting the magnetization with ⟨𝑍⟩ = 1
60

∑︀
𝑖 ⟨𝑍𝑖⟩ when 𝑑 = 1. The comparison between the

prediction with Λ = 1 (full expansion) and the exact value is shown in Fig. 3(a). Namely, we select 25 test examples
evenly distributed across the interval [−𝜋, 𝜋]. By increasing the number of training examples 𝑛 from 10 to 20, the
prediction values of the proposed ML model almost match the exact results.

The second subtask is much more difficult, which is predicting the magnetization with ⟨𝑍⟩ when 𝑑 = 30. In
this scenario, full expansion becomes computationally infeasible, where the cardinality of frequency set is 330. In this
regard, we evaluate the performance of the proposed ML models by adopting low truncation values with Λ ∈ {1, 2, 3, 4}.
Fig. 3(b) demonstrates the RMS prediction error of our proposal with the varied number of training examples,
i.e., 𝑛 ∈ {10, 102, 103, 104}. An immediate observation is that with the increased 𝑛, the averaged prediction error
continuously decreases for all settings of Λ. In addition, the achieved results hint that the proposed model with a
larger truncation value Λ may require more training examples to surpass the one with a smaller truncation value. For
instance, the proposed ML model with Λ = 2 attains a better performance compared to Λ = 1 when 𝑛 = 104. It is
expected that the model with Λ = 3, 4 can attain better performance by further increasing 𝑛.
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V. DISCUSSION AND OUTLOOK

In this study, we prove that learning bounded-gate quantum circuits with incoherent measurements is sample
efficient but computationally hard. Furthermore, we devise a provably efficient ML algorithm to predict the incoherent
dynamics of bounded-gate quantum circuits, transitioning from exponential to polynomial scaling. The achieved
results provide both theoretical insights and practical applications, demonstrating the efficacy of ML in comprehending
and advancing quantum computing.

Several crucial research avenues merit further exploration. First, our study addresses the scenario of noiseless
quantum operations. An important and promising area for future investigation is the development of provably
efficient learning algorithms capable of predicting the incoherent dynamics of noisy bounded-gate quantum circuits
[62–64]. Secondly, it is vital to extend our theoretical results from average-case scenarios to worst-case scenarios,
wherein classical control can be sampled from arbitrary distributions rather than solely from the uniform distribution
[65, 66]. Such extensions would deepen our understanding of the capabilities and limitations of employing machine
learning to comprehend quantum circuits. Moreover, there exists ample opportunity to enhance our proposed learning
algorithm by exploring alternative kernel methods, such as the positive good kernels [67] adopted in Ref. [68]. In
addition, independent of this work, a crucial research topic is understanding the hardness of classically simulating
the incoherent dynamics of bounded-gate quantum circuits with simple input quantum states in the measure of the
averaged prediction error. Last, it would be intriguing to explore whether deep learning algorithms [69] can achieve
provably improved prediction performance and efficiency for specific classes of quantum circuits.
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1. Classical shadow and its application in estimating incoherent dynamics of quantum states

Classical shadow represents a computationally and memory-efficient approach for storing quantum states on classical
computers, primarily used for estimating the expectation values of local observables [31]. The fundamental principle
of classical shadow lies in the ‘measure first and ask questions later’ strategy. In this subsection, we outline the
utilization of classical shadow to estimate linear functions under Pauli-based measurements. Interested readers can
refer to tutorials and surveys [33, 70] for more comprehensive details.

Formalism of classical shadow. The general scheme of classical shadow for an unknown 𝑁 -qubit state 𝜌 is
repeating the following procedure 𝑇 times. At each time, the state 𝜌 is first operated with a unitary 𝑈 randomly
sampled from the predefined unitary ensemble 𝒰 and then each qubit is measured under the Z basis to obtain an
𝑁 -bit string denoted by 𝑏 ∈ {0, 1}𝑁 . There exists a linear map ℳ(·) satisfying

ℳ(𝜌) = E𝑈∼𝒰E𝑏∼P(𝑏)𝑈
† |𝑏⟩ ⟨𝑏|𝑈 =

∑︁
𝑏

∫︁
d𝑈𝑈† |𝑏⟩ ⟨𝑏|𝑈 ⟨𝑏|𝑈𝜌𝑈† |𝑏⟩ , (A1)

where P(𝑏) = ⟨𝑏|𝑈𝜌𝑈† |𝑏⟩. Such a linear map implies that the unknown state 𝜌 can be formulated as

𝜌 =
∑︁
𝑏

∫︁
d𝑈ℳ−1

(︁
𝑈† |𝑏⟩ ⟨𝑏|𝑈

)︁
⟨𝑏|𝑈𝜌𝑈† |𝑏⟩ . (A2)

In other words, the state 𝜌 can be estimated by sampling the snapshot with 𝑀 times following the distribution

P(𝑏). Define the 𝑡-th snapshot as 𝑈†
𝑡 |𝑏𝑡⟩ ⟨𝑏𝑡|𝑈𝑡 with 𝑡 ∈ [𝑇 ] and 𝑈𝑡 ∼ 𝒰 . The estimated state of 𝜌 is

𝜌𝑇 =
1

𝑇

𝑇∑︁
𝑡=1

𝜌𝑡, with 𝜌𝑡 = ℳ−1(𝑈†
𝑡 |𝑏𝑡⟩ ⟨𝑏𝑡|𝑈𝑡). (A3)

As pointed out in Ref. [31], the random Pauli basis is not only experimentally friendly but also enables a succinct
form of the classical shadow. When Pauli-based measurements are adopted, it is equivalent to setting the unitary
ensemble 𝒰 as single-qubit Clifford gates, i.e., 𝑈𝑡 = 𝑈1,𝑡⊗ · · ·𝑈𝑗,𝑡 · · · ⊗𝑈𝑁,𝑡 ∼ 𝒰 = CI(2)⊗𝑁 with uniform weights. In
this case, the inverse snapshot takes the form as

𝜌𝑡 = ℳ−1

⎛⎝ 𝑁⨂︁
𝑗=1

𝑈†
𝑗,𝑡|𝑏𝑗,𝑡⟩⟨𝑏𝑗,𝑡|𝑈𝑗,𝑡

⎞⎠ =

𝑁⨂︁
𝑗=1

𝒟−1
1/3

(︁
𝑈†
𝑗,𝑡|𝑏𝑗,𝑡⟩⟨𝑏𝑗,𝑡|𝑈𝑗,𝑡

)︁
=

𝑁⨂︁
𝑗=1

(︁
3𝑈†

𝑗,𝑡|𝑏𝑗,𝑡⟩⟨𝑏𝑗,𝑡|𝑈𝑗,𝑡 − I2
)︁
, (A4)

where 𝒟−1
1/3(𝑌 ) = 3𝑌 − Tr(𝑌 )I.

Estimate incoherent dynamics (linear properties of quantum states). The tensor product form of the
classical shadow in Eq. (A4) allows an efficient procedure to predict linear properties of the state 𝜌. A typical
instance is estimating the expectation value Tr(𝜌𝑂) with 𝑂 being a local observable. Mathematically, suppose the
local observable to be a Pauli string, i.e., 𝑂 = 𝑃1 ⊗ ...𝑃𝑖...⊗ 𝑃𝑁 with 𝑃𝑖 ∈ {𝑋,𝑌, 𝑍, I} for ∀𝑖 ∈ [𝑁 ], the estimation of
the classical shadow is

Tr (𝜌𝑇 (𝑃1 ⊗ ...𝑃𝑖...⊗ 𝑃𝑁 )) =
1

𝑇

𝑇∑︁
𝑡=1

𝑁∏︁
𝑗=1

Tr
(︁(︁

3𝑈†
𝑗,𝑡|𝑏𝑗,𝑡⟩⟨𝑏𝑗,𝑡|𝑈𝑗,𝑡 − I2

)︁
𝑃𝑗

)︁
, (A5)

which is memory and computation efficient. Namely, one only needs𝒪(𝑁𝑇 ) bits to store 𝜌𝑇 and𝒪(𝑁𝑇 ) computational
time to load 𝜌𝑇 to the classical memory. Next, when the locality of the observable 𝑂 =

∑︀
𝑖𝑂𝑖 is 𝐾 ∼ 𝒪(1), the

shadow estimation of the expectation value, i.e., Tr(𝜌𝑂𝑖), can be performed in 𝒪(𝑇 ) time after 𝜌𝑇 is loaded into the
classical memory [31].

2. Pauli transfer matrix and Trigonometric expansion of RZ +CI quantum circuits

Pauli Transfer Matrix. Here we use Pauli-Liouville representation to reformulate the quantum state and the
observable. Specifically, an 𝑁 -qubit state can be represented as a 4𝑁 -dimensional vector, whose 𝑖-th entry is

|·⟩⟩ = Tr(·𝑃𝑖) with 𝑃𝑖 ∈ {I, 𝑋, 𝑌, 𝑍}𝑁 . (A6)
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For example, the state |0⟩⊗𝑁 satisfies (|0⟩ ⟨0|)⊗𝑁 = ((I+ 𝑍)/2)⊗𝑁 , which indicates that its representation under the
Pauli basis yields

|0⟩⊗𝑁 ≡ |0⟩⟩ = ((I+ 𝑍)/2)⊗𝑁 =
(︀
[1, 0, 0, 1]⊤

)︀⊗𝑁
. (A7)

Similarly, the normalized Pauli operator 𝑂 under the Pauli basis yields

|𝑂⟩⟩ = [Tr (𝑂𝑃1) , · · · ,Tr (𝑂𝑃4𝑁 )]
⊤
. (A8)

The unitary operator can also be represented by Pauli basis, i.e., given a parameterized circuit 𝑈(𝜃), its Pauli Transfer
Matrix (PTM) U(𝜃) yields

[U(𝜃)]𝑖𝑗 = ⟨⟨𝑃𝑖|U(𝜃)|𝑃𝑗⟩⟩ = Tr
(︀
𝑃𝑖𝑈(𝜃)𝑃𝑗𝑈(𝜃)†

)︀
. (A9)

For example, the PTM representation of RZ(𝑥𝑗) gate is

RZ(𝑥𝑗) =

⎡⎢⎣1 0 0 0
0 cos(𝑥𝑗) sin(𝑥𝑗) 0
0 − sin(𝑥𝑗) cos(𝑥𝑗) 0
0 0 0 1

⎤⎥⎦ = 𝐷0 + cos(𝑥𝑗)𝐷1 + sin(𝑥𝑗)𝐷2, (A10)

where 𝐷0 =

⎡⎢⎣1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎦, 𝐷1 =

⎡⎢⎣0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎦, and 𝐷2 =

⎡⎢⎣0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤⎥⎦.
Trigonometric expansion of RZ+CI quantum circuits. A critical research line in quantum computing involves
determining if variational quantum algorithms can provide meaningful advantages over state-of-the-art classical meth-
ods through dequantization via Fourier expansion [71, 72]. Despite differing objectives, the techniques developed, par-
ticularly the Low-Weight Efficient Simulation Algorithm (LOWESA) [63, 73], serve as inspiration for our approach
to predicting the incoherent dynamics of bounded-gate quantum circuits. In the following context, we delve into the
mechanics of LOWESA and postpone the discussion on the connection and difference between our work and this
research line to SM A4.

We now recap the mechanism of LOWESA. When an 𝑁 -qubit quantum circuit 𝑈(𝑥) is composed of 𝑑 RZ gates
and 𝐺− 𝑑 CI gates, the state representation under Pauli-basis expansion yields

𝜌(𝑥) = 𝑈(𝑥)(|0⟩ ⟨0|)⊗𝑁𝑈(𝑥)† =
∑︁
𝜔

Φ𝜔(𝑥)⟨⟨0|U†
𝜔 ≡

∑︁
𝜔

Φ𝜔(𝑥)𝜌𝜔. (A11)

The notation Φ𝜔(𝑥) with 𝜔 ∈ {0,±1}𝑑 refers to the trigonometric monomial basis with values

Φ𝜔(𝑥) =

𝑑∏︁
𝑖=1

⎧⎪⎨⎪⎩
1 if 𝜔𝑖 = 0

cos(𝑥𝑖) if 𝜔𝑖 = 1

sin(𝑥𝑖) if 𝜔𝑖 = −1

. (A12)

Moreover, U𝜔 in Eq. (A11) refers to the purely-Clifford circuit for the path indexed by 𝜔 in the sense that in the path
𝜔, each RZ gate at the 𝑖-th position with 𝑖 ∈ [𝑑] is replaced by the operator 𝐷𝜔𝑖

in Eq. (A10). The quantum mean
value under an observable 𝑂 is

𝑓(𝑥, 𝑂) ≡ Tr(𝜌(𝑥)𝑂) =
∑︁
𝜔

Φ𝜔(𝑥)⟨⟨0|U†
𝜔 |𝑂⟩⟩. (A13)

It is noteworthy that LOWESA is a purely classical approach to estimating expectation values of simple variational
quantum circuits. The term ‘simple’ is reflected by the fact that even for low dimensional classical controls (i.e., a
small 𝑑), its computational complexity is prohibited by other two key factors: the initial state and the number of
CI gates 𝐺 − 𝑑. This is because when the initial state (|0⟩ ⟨0|)⊗𝑁 is substitute a complicated one (e.g., a state with
exponentially many terms under Pauli basis), and 𝐺 − 𝑑 becomes large, the computational overhead of calculating

⟨⟨0|U†
𝜔 |𝑂⟩⟩ is unaffordable by classical simulators.
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3. Generality of exploring the learnability of ℱ for early-stage quantum computation

Here we discuss the generality of the explored mean-value space in the main text, i.e.,

ℱ =
{︁
𝑓(𝑥, 𝑂) = Tr

(︀
𝑈(𝑥)𝜌0𝑈(𝑥)†𝑂

)︀ ⃒⃒⃒
𝑥 ∈ [−𝜋, 𝜋]𝑑, 𝑂 ∼ D𝑂

}︁
, (A14)

where 𝑈(𝑥) =
∏︀𝑑
𝑙=1(RZ(𝑥𝑙)𝑢𝑒) is composed of 𝑑 RZ(𝑥𝑙) gates and 𝐺 − 𝑑 CI gates denoted by 𝑈𝑒 with CI =

{𝐻,𝑆,CNOT}. This formalism encompasses many applications for early-stage quantum computing, including varia-
tional quantum algorithms, classical-shadow-based algorithms, and quantum system certification. A common feature
of these applications is that the exploited quantum circuit is generally hardware-efficient, due to the limited coher-
ence time and qubit connectivity of early-stage quantum devices. As a result, for a specified quantum device, its
executable quantum circuits can be described by RZ+CI gates with a fixed layout but with different angles, i.e.,
𝑈(𝑥) in Eq. (A14). Given an unknown state 𝜌0 evolved by 𝑈(𝑥) and incoherently measured by an observable 𝑂, it
forms the mean-value space ℱ explored in this work. In the following, we detail how ℱ relates to variational quantum
algorithms, classical-shadow-based applications, and quantum system certification, respectively.

Variational quantum algorithms. We briefly review the mechanism of variational quantum algorithms (VQAs).
Interested readers can refer to the surveys [29, 43] for detailed information. VQAs generally consist of an 𝑁 -qubit
circuit and a classical optimizer. In the training stage, VQAs follow an iterative manner to proceed with optimization,
where the optimizer continuously leverages the output of the quantum circuit to update trainable parameters of the
adopted ansatz, i.e., 𝑥 of 𝑈(𝑥), to minimize a predefined objective function ℒ(·). Mathematically, at the 𝑡-th iteration,
the updating rule for the trainable parameters 𝑥 is

𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂
𝜕ℒ
(︀
𝑓(𝑥(𝑡), 𝑂), 𝑐1

)︀
𝜕𝑥

, (A15)

where 𝜂 is the learning rate, 𝑐1 ∈ R is the target label, and 𝑓(𝑥(𝑡), 𝑂) amounts to the output of the quantum circuit
defined in Eq. (A14). The optimization is terminated when the training loss is lower than a threshold or the total
number of iterations 𝑇 exceeds a predefined value. Two main protocols of VQAs are quantum neural networks
(QNNs) and variational quantum Eigen-solver (VQEs). The former is utilized to solve machine learning tasks such as
classification and regression, and the latter is exploited to estimate the ground state energy of a given Hamiltonian.
Notably, when QNNs are applied, the classical control 𝑥 should be divided into two parts, where the first part is
used to encode training examples (without updating) and the second part refers to the trainable parameters. Refer
to SM J for details.

Classical-shadow-based applications. A major application of classical shadow, as introduced in SM A1, is
estimating linear properties of quantum states, i.e., Tr(𝜌𝑂). When the measured states 𝜌 are generated by early-stage
quantum devices, whose circuit can be described by RZ+CI gates with a fixed layout but with different angles, the
formed function space coincides with ℱ in Eq. (A14). It is noteworthy that classical-shadow-based applications are
highly entangled with variational quantum algorithms [74, 75], quantum system certification (explained below), and
two novel quantum machine learning protocols—flipped model and shadow model [76]. For the flipped model, the
training examples 𝑧 are encoded into the measurement observables rather than the quantum state, i.e., the prediction
of the flipped model yields Tr(𝑈(𝑥)𝜌0𝑈(𝑥)†𝑂(𝑧)), where 𝑥 refers to trainable parameters. As the mean-value space
ℱ in Eq. (A14) supports a class of measurement operators 𝑂 sampled from a distribution D𝑂, the achieved results
in this work can be harnessed to empower the flipped model. Similarly, the key concept of the shadow model is
using classical shadow to obtain the classical description of the state 𝑈(𝑥)𝜌0𝑈(𝑥)†, followed by classically estimating
Tr(𝑈(𝑥)𝜌0𝑈(𝑥)†𝑂(𝑧)), which is also under the framework of ℱ in Eq. (A14). Taken together, the developed algorithm
in this work can greatly reduce the required quantum resources for developing the relevant algorithms.

Quantum system certification. As quantum devices scale up to larger system sizes, the demand for application-
specific certification tools becomes apparent. These tools must surpass standard approaches, such as fully simulating
a device on a classical computer or performing full tomographic reconstruction, which incurs exponential computa-
tional overhead with the qubit count. In response, various certification protocols have been developed to extract
different levels of information from the explored quantum chip by using minimal quantum resources. Among them,
a representative class of certification protocols is estimating the linear property of quantum states generated by the
employed quantum chip, such as direct fidelity estimation [77], entanglement witnessing [78], and two-point correlator
[79]. Notably, all of these tasks can be described by the mean-value space ℱ in Eq. (A14).
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4. Literature review

Relevant prior literature to our study can be categorized into three groups: solving quantum many-body problems
using machine learning, learnability of quantum circuits, and enhancing early-stage quantum computing (e.g., vari-
ational quantum algorithms and quantum system certification) by classical machine learning. In the following, we
elucidate how our study aligns with and distinguishes itself from these earlier works.

Machine learning for quantum many-body problems. The seminal work in this context is presented in Huang
et al. [79], demonstrating that machine learning algorithms, informed by data collected in physical experiments, can
effectively tackle certain quantum many-body problems that are challenging for classical algorithms. In particular,
the 𝑙2 Dirichlet kernel is proposed to predict the ground state properties of a class of Hamiltonians.

Let the training data be {𝑥(𝑖) → 𝜌𝑇 (𝑥
(𝑖))}𝑛𝑖=1 with 𝑛 training examples. Here 𝜌(𝑥) refers to the ground state of

Hamiltonian 𝐻(𝑥) with 𝑥 ∈ [−1, 1]𝑑 and 𝜌𝑇 (𝑥) amounts to the classical shadow with 𝑇 snapshots. The predicted
ground state representation is given by

�̂�𝑛(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝜅
(︁
𝑥,𝑥(𝑖)

)︁
𝜌𝑇 (𝑥

(𝑖)), with 𝜅(𝑥,𝑥(𝑖)) =
∑︁

𝑘∈Z𝑑,‖𝑘‖2≤Λ

cos
(︁
𝜋𝑘 ·

(︁
𝑥− 𝑥(𝑖)

)︁)︁
∈ R, (A16)

where 𝜅(·, ·) is the 𝑙2 Dirichlet kernel. The following theorem indicates the efficiency of learning 𝜌(𝑥) for quantum
many-body problems.

Theorem A.1 (Adapted from Theorem 4, [79]). Consider a parametrized family of 𝑁 -qubit states {𝜌(𝑥) :
𝑥 ∈ [−𝜋, 𝜋]𝑑} and a sum of local observables 𝑂 =

∑︀
𝑖=1𝑂𝑖 that obey E𝑥∼[−𝜋,𝜋]𝑑‖∇𝑥 Tr(𝑂𝜌(𝑥))‖22 ≤

𝐶 (smoothness condition) and
∑︀
𝑖 ‖𝑂𝑖‖∞ ≤ 𝐵 (bounded norm). Then, classical shadow data {𝑥(𝑖) → 𝜌𝑇 (𝑥

(𝑖))}𝑛𝑖=1

with 𝑥(𝑖) ∼ Unif[−𝜋, 𝜋]𝑑, 𝑛 = 𝐵2𝑑𝒪(𝐶/𝜖) (training data size), and Λ = Θ(
√︀
𝐶/𝜖) suffices to produce a state

prediction model we can learn from classical shadow data to produce a model �̂�𝑛(𝑥) in Eq. (A16) that achieves

E𝑥∼[−𝜋,𝜋]𝑑 |Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌(𝑥))|2 ≤ 𝜖 with high probability. The classical training time for constructing �̂�𝑛(𝑥)

and the prediction time for computing Tr(𝑂�̂�𝑛(𝑥)) are both upper bounded by 𝒪((𝑁 + 𝐿)𝐵2𝑑𝒪(𝐶/𝜖)).

Recent follow-up works have further augmented the capacity of machine learning in addressing quantum many-body
problems. Specifically, Ref. [68] explored a specific class of scenarios in quantum many-body problems and devised
positive good kernels, achieving a polynomial sample complexity for predicting quantum many-body states and their
properties. Furthermore, when concentrating on learning the average of observables with a locality assumption,
Refs. [80, 81] achieved a quasi-polynomial sample complexity. Additionally, Ref. [82] extended the results of learning
phases of quantum matter characterized by exponential decay of correlations, to the task of learning local expectation
values for all states within a phase.

Our study diverges from this line of research in terms of its distinct objectives. While previous works concentrate
on predicting the properties of quantum many-body states, our focus is on predicting the incoherent dynamics of
bounded-gate quantum circuits. This disparity in objectives results in the utilization of different prior information,
with the former relying primarily on assumptions about the explored Hamiltonian, such as locality, while the latter
leverages the properties of quantum gates, such as RZ+CI. As a result, the proposed trigonometric monomial kernel
in our proposal is more succinct compared to the 𝑙2 Dirichlet kernel in terms of the frequency set, i.e., 𝜔 ∈ {0,±1}𝑑
in Eq. (6) versus 𝑘 ∈ Z𝑑 in Eq. (A16).

Learning quantum circuits. Several studies have been undertaken to explore the learnability of quantum circuits,
a critical aspect of quantum learning theory [34, 35]. Notably, in Ref. [36], it was demonstrated that when learning a
state generated by a quantum circuit with 𝐺 two-qubit gates to a small trace distance, a sample complexity scaling
linearly in 𝐺 is both necessary and sufficient. However, the computational complexity for learning states and unitaries
must scale exponentially in 𝐺. While our work shares similar complexity scaling, it diverges in two key aspects: (1)
we address a different problem, focusing on the incoherent dynamics of bounded-gate quantum circuits; and (2) we
provide concrete algorithms to balance the trade-off between sample and computational complexities.

In Ref. [83], a polynomial-time classical algorithm was devised to learn the description of any unknown 𝑁 -qubit
shallow quantum circuit 𝑈 . Furthermore, they developed another polynomial-time classical algorithm to learn the
description of any unknown 𝑁 -qubit state prepared by a shallow quantum circuit 𝑈 on a 2D lattice. However, unlike
their study, our proposed algorithm does not necessitate the circuit to be shallow. Additionally, the key components
of our algorithm include classical shadow, kernel method, and trigonometric expansion, whereas their algorithm relies
on a quantum circuit representation based on local inversions and a technique to combine these inversions.

Enhancing early-stage quantum computing by machine learning. For clarity, here we separately discuss
how previous studies harness machine learning to enhance variational quantum algorithms and quantum system
certification.
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Variational quantum algorithms. The incorporation of machine learning to improve VQAs follows two main ap-
proaches. The first approach involves integrating deep neural networks and variational quantum circuits to form a
hybrid learning model capable of addressing diverse computational tasks [84–88]. These learning protocols often lack
theoretical guarantees and fall outside the scope of our study.

The second approach entails designing classical surrogates capable of inferring the output of VQAs. The outcomes
of this approach not only benefit from assessing whether VQAs can offer meaningful advantages over state-of-the-
art classical methods but also contribute to conserving quantum resources for the development of novel VQAs. A
notable paradigm in this context, complementary to tensor network methods and Clifford-based simulators, involves
the dequantization of VQAs via Fourier expansion [72]. In particular, Refs. [63, 73, 89, 90] proposed Fourier-based
algorithms to simulate variational quantum algorithms when applied to simulate the expectation value of an observable
for an initial state evolved under a unitary quantum circuit, e.g., the tasks covered by variational quantum Eigen-
solvers and quantum approximate optimization algorithms. Besides, Refs. [56, 91, 92] harness Fourier features to
dequantize VQAs, i.e., quantum neural networks, when applied to solve classical machine learning tasks.

Our approach distinguishes itself from previous Fourier-based methods by offering broader applicability beyond the
classical simulation of VQAs. A specific illustration is that prior Fourier-based approaches often impose constraints
on the initial state, such as requiring it to be a simple product state (|0⟩ ⟨0|)⊗𝑁 interpreted in SM A2. In contrast, our
proposal eliminates this requirement. This advancement is rooted in the hybrid nature of our approach, which utilizes
shadow information from quantum computers to build the training dataset. Technically, our method integrates
three distinct techniques—classical shadow, kernel method, and trigonometric expansion—paving the way for the
development of novel strategies to enhance variational quantum algorithms with provable guarantees.

Quantum system certification. We next explain how our work relates to learning-based quantum system certification.
Prior literature related to this topic can be classified into two categories. The first category is using deep learning
to improve quantum tomography [93], which has two distinct research lines. The first line involves explicit state
reconstruction, where the output of neural networks represents the density matrix of the target quantum state [27,
94, 95]. This line exploits the generalization ability of neural networks, where the optimized neural networks can
predict the density matrix of unseen states when sampled from the same distribution of the training data. The second
line focuses on implicit state reconstruction, wherein neural networks are optimized to emulate the behavior of a
given quantum state [96–99]. Note that the second line merely exploits the fitting power of neural networks, where
the optimized neural networks can only reconstruct a single state and do not possess the generalization ability. As
such, this research line is beyond the scope of our work. The second category is using deep learning to predict the
properties of quantum states, including fidelity estimation [100], energy estimation [101], entropy estimation [102],
cross-platform verification [103], and similarity testing [104].

Despite distinct applications, the learning paradigm of these two categories is very similar. In particular, a labeled
dataset needs to be first collected to conduct supervised learning. The data features of training examples generally
are random measurement results, and the label corresponds to the specific tasks, i.e., the density matrix for quantum
state tomography and entanglement entropy for entropy estimation. After training, the optimized neural network can
predict the unseen state by feeding into the random measurement results. As addressed in the main text, a critical
caveat of learning-based quantum system certification is that it lacks a theoretical guarantee. Our work fills this
knowledge gap and provides concrete evidence of using various machine learning techniques to comprehend quantum
systems.

Remark. We conclude this section by highlighting the complementary nature of our work to quantum tomography
and classical simulators in comprehending the behavior of large-qubit quantum devices. In contrast to tomography-
based approaches, the offline capability of our proposal could markedly reduce the quantum resource overhead.
Moreover, compared to classical simulators, our proposal offers two notable advantages. Firstly, it outperforms
classical simulation methods in terms of runtime complexity by removing the reliance on the number of Clifford gates.
Secondly, our approach accommodates arbitrarily complex input states, whereas classical simulators often necessitate
simple input states such as the product state.

SM B: Proof of Theorem 1

Theorem (Formal statement of Theorem 1). Following notations in Eq. (3), denote a dataset {𝑥(𝑖), 𝑓𝑇 (𝑥
(𝑖))}𝑛𝑖=1

containing 𝑛 training examples with 𝑥(𝑖) ∈ [𝜋, 𝜋]𝑑 and 𝑓𝑇 (𝑥
(𝑖)) being the estimation of 𝑓(𝑥(𝑖), 𝑂) using 𝑇 incoherent

measurements. Then, when 𝑇 ≤ (1−𝜖2)
𝜖 𝑁 log 2 and 𝜖≪ 1, the training data size

(1− 𝜖)(𝐶1𝑑− log 2)

𝜖𝑇
≤ 𝑛 ≤ ̃︀𝒪(︂𝐵2𝑑+𝐵2𝑁𝐺

𝜖

)︂
(B1)
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is sufficient and necessary to achieve E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)| ≤ 𝜖 with high probability. How-

ever, there exists a class of 𝐺-bounded-gate quantum circuits requiring Ω(2𝑑) runtime cost to achieve
E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)| ≤ 𝜖.

The proof of Theorem 1 can be broken down into three parts: the lower bound of sample complexity, the upper
bound of sample complexity, and the lower bound of runtime complexity. The corresponding bounds are established
in the following three theorems, and the proofs are presented in SM C, SM D, and SM E, respectively.

Theorem B.1 (Lower bound of sample complexity). Consider that a learner collects a dataset 𝒯 = {𝑥(𝑖), 𝜌𝑇 (𝑥
(𝑖))}𝑛𝑖=1

containing 𝑛 training examples to predict unseen states 𝜌(𝑥) with 𝑥 ∈ [𝜋, 𝜋]𝑑. Suppose that with high probability, the
learned model ℎ(·, ·) can achieve

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)| ≤ 𝜖. (B2)

Then, when 𝑇 ≤ (1−𝜖)
𝜖 𝑁 log 2, the training data size must obey

𝑛 ≥ (1− 𝜖)(𝐶1𝑑− log 2)

𝜖𝑇
, (B3)

where 𝐶1 ∈ (0, 1) is a constant.

Theorem B.2 (Upper bound of sample complexity). Consider a learner quires an 𝑁 -qubit quantum circuits and
collects a dataset 𝒯 = {𝑥(𝑖), 𝜌𝑇 (𝑥

(𝑖))}𝑛𝑖=1 containing 𝑛 training examples to predict unseen states 𝜌(𝑥) with 𝑥 ∈ [𝜋, 𝜋]𝑑.
Suppose with high probability, there exists a learned model ℎ(·, ·) that can achieve

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)|2 ≤ 𝜖. (B4)

using training data of size

𝑛 ≤ ̃︀𝒪(︂𝐵2𝑑+𝐵2𝑁𝐺

𝜖

)︂
. (B5)

Theorem B.3 (Lower bound of runtime complexity). There exists a class of bounded-gate quantum circuits composed
of 𝑑 RZ gates and 𝐺− 𝑑 CI gates such that no polynomial-time algorithm exists to achieve

E𝑥∼D𝒳 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)|2 ≤ 𝜖, (B6)

unless BQP ⊂ HeurP/Poly.

Proof of Theorem 1. The proof of Theorem 1 can be immediately obtained by combining the results of Theorems B.1,
B.2, and B.3.

SM C: Lower bound of learning bounded-gate quantum circuits with incoherent measurement (Proof of
Theorem B.1)

In this section, we comprehend the fundamental limitation of learning quantum circuits with a bounded number
of non-Clifford gates when only the classical input control and incoherent measurements are allowed, and the circuit
layout is unknown to the learner. As elaborated on in the main text, these restrictions echo most experiments on
early-stage quantum computers, i.e., the prediction solely relies on shadow information about the output state without
harnessing any prior knowledge about the circuit layout.

Theorem (Restatement of Theorem B.1). Consider that a learner collects a dataset 𝒯 = {𝑥(𝑖), 𝜌𝑇 (𝑥
(𝑖))}𝑛𝑖=1 con-

taining 𝑛 training examples to predict unseen states 𝜌(𝑥) with 𝑥 ∈ [𝜋, 𝜋]𝑑. Suppose that with high probability, the
learned model ℎ(·, ·) can achieve

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)| ≤ 𝜖. (C1)

Then, when 𝑇 ≤ (1−𝜖)
𝜖 𝑁 log 2, the training data size must obey

𝑛 ≥ (1− 𝜖)(𝐶1𝑑− log 2)

𝜖𝑇
, (C2)

where 𝐶1 ∈ (0, 1) is a constant.
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To reach Theorem B.1, we constitute a class of quantum circuits and analyze the lower bound of the required
sample complexity for a learner to achieve the average prediction error 𝜖. In particular, we consider a simple family
of two-qubit quantum circuits illustrated in Fig. C.4(a), which is composed of 𝑑 RZ gates and at most 6𝑑 CI gates.
The explicit expression of this class of quantum circuits is

ℱ =
{︀
𝑓𝑎(𝑥) = Tr

(︀
𝑊 (𝑥,𝑎)(𝜌0 ⊗ |0⟩ ⟨0|)𝑊 (𝑥,𝑎)†𝑂

)︀ ⃒⃒
𝑎 ∈ {0, 1}𝑑,𝑥 ∼ [−𝜋, 𝜋]𝑑

}︀
, (C3)

where 𝜌0 ⊗ |0⟩ ⟨0| is the initial two-qubit state with

𝜌0 =

⎡⎢⎣
(︁(︁√︀

1− 2
√
𝜖+

√︀
1 + 2

√
𝜖
)︁
/2
)︁2 √

2𝜖/2
√
2𝜖/2

(︁(︁√︀
1− 2

√
𝜖−

√︀
1 + 2

√
𝜖
)︁
/2
)︁2
⎤⎥⎦ , (C4)

𝑊 (𝑥,𝑎) refers to the parameterized unitary depending on the classical control 𝑥 and the label 𝑎 with

𝑊 (𝑥,𝑎) = 𝐺𝑎𝑑

𝑑 (RZ(𝑥𝑑)⊗ I)𝐺𝑎𝑑

𝑑 · · ·𝐺𝑎𝑗

𝑗 (RZ(𝑥𝑗)⊗ I)𝐺𝑎𝑗

𝑗 · · ·𝐺𝑎1
1 (RZ(𝑥1)⊗ I)𝐺𝑎1

1 (C5)

and 𝐺0
0 = · · · = 𝐺0

𝑑 = I4 and 𝐺1
1 = · · · = 𝐺1

𝑑 = SWAP, and 𝑂 = 𝐵(𝑋 ⊗ I2) is the observable.

𝜌! 𝑅!(𝒙") 𝑅!(𝒙𝒋)… … 𝐵𝑋

… … 𝐼|0⟩
𝐺"
$/" 𝐺"

$/" 𝐺&
$/" 𝐺&

$/"

𝑅!(𝒙𝒅)

𝐺(
$/" 𝐺(

$/"

𝜌! 𝑅!(𝒙") 𝑅!(𝒙𝒋)… … 𝑅!(𝒙𝒅) 𝐵𝑋

𝜌! 𝑅!(𝒙") 𝑅!(𝒙𝒋)… … 𝑅!(𝒙𝒅) 𝐵𝑋

(a)

(b)

𝑎 = 00…1… 00

𝑎 = 00…0… 01

Figure C.4: (a) Illustration of the constructed family of quantum circuits. The dashed box refers that ∀𝑖 ∈ [𝑑], the
SWAP gate 𝐺𝑖 is optionally applied to the circuit if the bit string satisfies 𝑎𝑖 = 1. (b) The visualization of the simplified
circuit when 𝑎 = 00...1...0 (upper) and 𝑎 = 00...0...1 (lower). The dashed green box stands for replacing the RZ gate
with the identity gate.

Note that any candidate in ℱ can be simplified to a single-qubit circuit, as demonstrated in Fig. C.4(b). That is,
the equivalent single-qubit circuit only consists of a sequence of RZ(𝑥𝑗) gates whose index 𝑎𝑗 is zero applied to the
initial state 𝜌0, followed by the measurement operator 𝐵𝑋. Thus, the simplified expression of this family of circuits
is

ℱ =
{︀
𝑓𝑎(𝑥) = 𝐵 Tr

(︀
𝑉 𝑎𝑑(𝑥𝑑) · · ·𝑉 𝑎1(𝑥1)𝜌0𝑉

𝑎1(𝑥1)
† · · ·𝑉 𝑎𝑑(𝑥𝑑)

†𝑋
)︀ ⃒⃒
𝑎 ∈ {0, 1}𝑑,𝑥 ∼ [−𝜋, 𝜋]𝑑

}︀
, (C6)

where 𝑉 0(𝑥𝑗) = RZ(𝑥𝑗) and 𝑉
1(𝑥𝑗) = I2 for ∀𝑗 ∈ [𝑑]. It is evident that the cardinality of ℱ is |ℱ| = 2𝑑.

To proceed further analysis, we now quantify the average distance of different functions in ℱ . To do so, we
reformulate 𝑓𝑎(𝑥) ∈ ℱ based on the trigonometric expansion. According to PTM representations in Eq. (A9), the
initial state 𝜌0 and Pauli-𝑋 can be written as

|𝜌0⟩⟩ =
[︁
1,
√
2𝜖, 0, 0

]︁⊤
and |𝑋⟩⟩ = [0, 1, 0, 0]⊤, respectively. (C7)

Moreover, following the PTM representations of RZ in Eq. (A10), every function in ℱ satisfies

𝑓𝑎(𝑥) = 𝐵

⟨⟨
𝜖
⃒⃒⃒
RZ

†

⎛⎝ ∑︁
𝑗,𝑎𝑗=0

𝑥𝑗

⎞⎠ ⃒⃒⃒𝑋⟩⟩ (C8a)

=
√
2𝜖𝐵 cos

⎛⎝ ∑︁
𝑗,𝑎𝑗=0

𝑥𝑗

⎞⎠ (C8b)

=
√
2𝜖𝐵 cos ((1− 𝑎1)𝑥1 + (1− 𝑎2)𝑥2 + ...+ (1− 𝑎𝑑)𝑥𝑑) . (C8c)
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The derived explicit form allows us to quantify the average discrepancy of any two candidates in ℱ , i.e., given
∀𝑓𝑎, 𝑓𝑎′ ∈ ℱ with 𝑎 ̸= 𝑎′, we have

E𝑥∼[−𝜋,𝜋]𝑑 |𝑓𝑎(𝑥, 𝑂)− 𝑓𝑎′(𝑥, 𝑂)|2 (C9a)

= 2𝜖𝐵2E𝑥∼[−𝜋,𝜋]𝑑
⃒⃒⃒
cos
(︁
(1− 𝑎1)𝑥1 + ...+ (1− 𝑎𝑑)𝑥𝑑

)︁
− cos

(︁
(1− 𝑎′

1)𝑥1 + ...+ (1− 𝑎′
𝑑)𝑥𝑑

)︁⃒⃒⃒2
(C9b)

= 2𝜖𝐵2

(︂
1

2
+

1

2

)︂
− 2𝜖𝐵2E𝑥∼[−𝜋,𝜋]𝑑 cos ((1− 𝑎1)𝑥1 + ...+ (1− 𝑎𝑑)𝑥𝑑) cos ((1− 𝑎′

1)𝑥1 + ...+ (1− 𝑎′
𝑑)𝑥𝑑)(C9c)

= 2𝜖𝐵2, (C9d)

where the first equality follows the explicit form of 𝑓𝑎 and 𝑓𝑎′ in Eq. (C8a), the second equality employs the two facts:
(i) ∀𝑎 ∈ {0, 1}𝑑, there are 𝑑− ‖𝑎‖0 effective and independent variables {𝑥𝑗}; (ii) these effective variables satisfy

E𝑥∼[−𝜋,𝜋]𝑑 |cos ((1− 𝑎1)𝑥1 + ...+ (1− 𝑎𝑑)𝑥𝑑)|2 (C10a)

= E𝑥∼[−𝜋,𝜋]𝑑−‖𝑎‖0 cos
2
(︁
𝑥1 + 𝑥2 + ...+ 𝑥𝑑−‖𝑎0‖

)︁
(C10b)

=
1

(2𝜋)𝑑−‖𝑎0‖

∫︁ 1 + cos
(︁
2𝑥1 + 2𝑥2 + ...+ 2𝑥𝑑−‖𝑎0‖

)︁
2

d𝑥 (C10c)

=
1

2
+

1

(2𝜋)𝑑−‖𝑎0‖

∫︁ cos(2𝑥1) cos
(︁
2𝑥2 + ...+ 2𝑥𝑑−‖𝑎0‖

)︁
− sin(2𝑥1) sin

(︁
2𝑥2 + ...+ 2𝑥𝑑−‖𝑎0‖

)︁
2

d𝑥 (C10d)

=
1

2
+

1

(2𝜋)𝑑−‖𝑎0‖

∫︁ 𝜋

−𝜋
cos(2𝑥1)d𝑥1

∫︁ cos
(︁
2𝑥2 + ...+ 2𝑥𝑑−‖𝑎0‖

)︁
2

d𝑥

− 1

(2𝜋)𝑑−‖𝑎0‖

∫︁ 𝜋

−𝜋
sin(2𝑥1)d𝑥1

∫︁ sin
(︁
2𝑥2 + ...+ 2𝑥𝑑−‖𝑎0‖

)︁
2

d𝑥 (C10e)

=
1

2
, (C10f)

and the last equality exploits the fact that the second term in Eq. (C9b) is zero as explained below. Specifically,
we partition 𝑥1, ...,𝑥𝑑 into two groups, depending on the index list 𝑎 and 𝑎′. Denote 𝑅 =

∑︀
𝑖,𝑎𝑖=𝑎′

𝑖=0 𝑥𝑖 as the

summation of entries whose index is zero in both 𝑎 and 𝑎′, and �̄� = (1 − 𝑎1)𝑥1 + ... + (1 − 𝑎𝑑)𝑥𝑑 − 𝑅 and �̄�′ =
(1 − 𝑎′

1)𝑥1 + ... + (1 − 𝑎′
𝑑)𝑥𝑑 − 𝑅 as the summation of the rest effective variables with the index list 𝑎 and 𝑎′,

respectively. Without loss of generality, we suppose ‖𝑎‖0 > ‖𝑎′‖0, implying that 𝑅 contains at least one effective
variable. Then, the second term in Eq. (C9b) follows

E𝑥∼[−𝜋,𝜋]𝑑 cos ((1− 𝑎1)𝑥1 + ...+ (1− 𝑎𝑑)𝑥𝑑) cos ((1− 𝑎′
1)𝑥1 + ...+ (1− 𝑎′

𝑑)𝑥𝑑) (C11a)

= E𝑥∼[−𝜋,𝜋]𝑑 cos(𝑅+ �̄�) cos(𝑅+ �̄�′) (C11b)

= E𝑥∼[−𝜋,𝜋]𝑑 [cos(�̄�) cos(𝑅)− sin(�̄�) sin(𝑅)][cos(𝑅) cos(�̄�′)− sin(𝑅) sin(�̄�′)] (C11c)

= E𝑥∼[−𝜋,𝜋]𝑑 [cos(�̄�) cos
2(𝑅) cos(�̄�′)− cos(�̄�) cos(𝑅) sin(𝑅) sin(�̄�′)

− sin(�̄�) sin(𝑅) cos(𝑅) cos(�̄�′) + sin(�̄�) sin2(𝑅) sin(�̄�′)] (C11d)

= 0, (C11e)

where the last equality exploits the fact that when 𝑅 contains at least one effective variable, the symmetric property
of integral with respect to trigonometric functions gives E𝑥∼[−𝜋,𝜋]𝑑 cos(𝑅) = E𝑥∼[−𝜋,𝜋]𝑑 sin(𝑅) = 0.

The result in Eq. (C9d) indicates that taking an expectation over 𝑥, all concept functions in ℱ are equally distant
by 2𝜖𝐵2. Learning this family of circuits can be reduced to the following multiple hypothesis testing problem:

1. Alice randomly and uniformly chooses a target concept 𝑓𝑎* ∈ ℱ , or equivalently 𝑎* ∈ {0, 1}𝑑;

2. The training dataset 𝒯 = {(𝑥(𝑖),𝑜
(𝑖)
𝑎*)}𝑛𝑖=1 with the size 𝑛 is collected based on 𝑓𝑎* , i.e., for the 𝑖-th training

example, the classical input 𝑥(𝑖) randomly sampled from [−𝜋, 𝜋]𝑑 is fed into the quantum system described by

𝑓𝑎* and the statistical estimation of 𝑓𝑎*(𝑥(𝑖), 𝑂) is obtained by 𝑇 shots with 𝑜
(𝑖)
𝑎* = 1

𝑇

∑︀
𝑡 𝑜

(𝑖)
𝑎*,𝑡 and E(𝑜(𝑖)

𝑎*) =

𝑓𝑎*(𝑥(𝑖), 𝑂);
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3. The learner leverages the training dataset 𝒯 to conduct the empirical risk minimization, i.e.,

ℎ𝒯 = argmin
ℎ∈ℱ

1

𝑛

𝑛∑︁
𝑖=1

ℓ
(︁
ℎ(𝑥(𝑖))− 𝑜

(𝑖)
𝑎*

)︁
, (C12)

where ℓ refers to the loss function measuring the difference between the prediction ℎ(𝑥(𝑖)) and the label 𝑜
(𝑖)
𝑎* ;

4. The hypothesis testing is conducted to infer the target concept using the learned ℎ𝒯 , i.e., the inferred index is

�̄� = arg min
𝑎,𝑓𝑎∈ℱ

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ𝒯 (𝑥)− 𝑓𝑎(𝑥)|2 (C13)

and the associated error probability is P(�̄� ̸= 𝑎*).

Since the average discrepancy between any two concepts in ℱ is 2𝜖𝐵2 as indicated in Eq. (C9d), the error probability
P(�̄� ̸= 𝑎*) becomes zero when E𝑥∼[−𝜋,𝜋]𝑑 |ℎ𝒯 (𝑥) − 𝑓𝑎*(𝑥, 𝑂)|2 < 𝜖𝐵2. In this scenario, ℎ𝒯 has a large average
prediction error for the data sampled from other 𝑓𝑎′ ∈ ℱ ∖ {𝑓𝑎*} in which the average error is at least 𝜖, i.e.,

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ𝒯 (𝑥)−𝑓𝑎′(𝑥, 𝑂)|2 ≥ E𝑥∼[−𝜋,𝜋]𝑑 |𝑓𝑎′(𝑥, 𝑂)−𝑓𝑎*(𝑥, 𝑂)|2−E𝑥∼[−𝜋,𝜋]𝑑 |ℎ𝒯 (𝑥)−𝑓𝑎*(𝑥, 𝑂)|2 > 2𝜖𝐵2−𝜖𝐵2 = 𝜖𝐵2.
(C14)

The multiple hypothesis testing problem reformulated above enables us to use Fano’s inequality to derive the lower
bound of sample complexity in learning 𝑓𝑎* ∈ ℱ . To be concrete, Fano’s lemma [105] states that

P[𝑎* ̸= �̄�] ≥ 1− 𝐼(𝑎*; �̄�) + log 2

log |ℱ| , (C15)

where 𝐼(𝑎*; �̄�) refers to the mutual information between random variables 𝑎* and �̄�, and |ℱ| denotes the cardinality
of ℱ . In other words, the derivation of the lower bound of the sample complexity 𝑛 amounts to quantifying the upper
bound of 𝐼(𝑎*; �̄�) and the lower bound of |ℱ|, which motivates the following proof of Theorem B.1.
Remark. For ease of analysis, in the proof of Theorem B.1, we consider the shot number 𝑇 is sufficiently large such
that the measured results can be approximated by the normal distribution with the mean 𝜇𝑎 = 𝑓𝑎(𝑥). Besides, for
each 𝑎, the corresponding variance of measured results is assumed to be equal with the varied 𝑥, i.e., for all 𝑥, the
variance is 𝜈𝑎 = E𝑥∼[−𝜋,𝜋]𝑑𝜈𝑎(𝑥).

Proof of Theorem 2. According to the above elaboration, we next separately quantify |ℱ| and the mutual information
𝐼(𝑎*; �̄�), followed by Eq. (C15) to attain the lower bound of sample complexity in learning the incoherent dynamics
of bounded-gate quantum circuits.

Cardinality of ℱ . The cardinality of ℱ can be obtained following its definition in Eq. (C3), i.e.,

|ℱ| = 2𝑑. (C16)

Upper bound of mutual information 𝐼(𝑎*; �̄�). Recall that the process of learning 𝑓𝑎* implies the Markov chain:

𝑎* → 𝜌1:𝑛 → 𝑜1:𝑛 → �̄�, (C17)

where for ease of notation, 𝜌1:𝑛 refers to the abbreviation of 𝑛 resulting states 𝜌𝑎*(𝑥(1)), ..., 𝜌𝑎*(𝑥(𝑛)) before taking

the measurements, and 𝑜1:𝑛 refers to the abbreviation of the measured statistic results 𝑜
(1)
𝑎* , ...,𝑜

(𝑛)
𝑎* of 𝑛 training

examples. Then, according to the data processing inequality, the mutual information 𝐼(𝑎*; �̄�) is upper bounded by
the mutual information between the target index 𝑎* and the measured statistical results 𝑜1:𝑛, i.e.,

𝐼(𝑎*; �̄�) ≤ 𝐼(𝑎*;𝑜1:𝑛). (C18)

Moreover, the mutual information on the right-hand side is upper bounded by

𝐼(𝑎*;𝑜1:𝑛) (C19a)

≤
𝑛∑︁
𝑖=1

𝐼(𝑎*;𝑜𝑖) (C19b)

≤
𝑛∑︁
𝑖=1

𝐼(𝑎*;𝑜𝑖,𝑥
(𝑖)) (C19c)
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=

𝑛∑︁
𝑖=1

𝐼(𝑎*;𝑥(𝑖)) + 𝐼(𝑎*;𝑜𝑖|𝑥(𝑖)) (C19d)

=

𝑛∑︁
𝑖=1

E𝑥(𝑖)∼[−𝜋,𝜋]𝑑𝐼(𝑎
*|𝑥(𝑖);𝑜𝑖|𝑥(𝑖)) (C19e)

=

𝑛∑︁
𝑖=1

E𝑥(𝑖)∼[−𝜋,𝜋]𝑑𝐼(𝑎
*;𝑜𝑖|𝑥(𝑖)). (C19f)

The first inequality stems from the chain rule and the fact that conditioning reduces entropy, i.e., 𝐼(𝑋;𝑌1:𝑛) =∑︀𝑛
𝑖=1𝐻(𝑌𝑖|𝑌1:𝑖−1) − 𝐻(𝑌𝑖|𝑋,𝑌1:𝑖−1) =

∑︀𝑛
𝑖=1𝐻(𝑌𝑖|𝑌1:𝑖−1) − 𝐻(𝑌𝑖|𝑋) ≤ ∑︀𝑛

𝑖=1𝐻(𝑌𝑖) − 𝐻(𝑌𝑖|𝑋) =
∑︀𝑛
𝑖=1 𝐼(𝑋;𝑌𝑖),

the second inequality exploits the relation 𝐼(𝑋;𝑌,𝑍) = 𝐻(𝑋)−𝐻(𝑋|𝑌,𝑍) ≥ 𝐻(𝑋)−𝐻(𝑋|𝑌 ) = 𝐼(𝑋;𝑌 ), the first
equality employs the chain rule of mutual information with 𝐼(𝑋;𝑌,𝑍) = 𝐼(𝑋;𝑌 ) + 𝐼(𝑋;𝑍|𝑌 ), the second equality
adopts the independence between 𝑎* and 𝑥(𝑖) with 𝐼(𝑎*;𝑥(𝑖)) = 0 and the KL divergence reformulation of mutual
information, and the last equality comes from the independence between 𝑎* and 𝑥(𝑖).

The above relation hints that the prerequisite to derive the upper bound of 𝐼(𝑎*,𝑜1:𝑛) is upper bounding
𝐼(𝑎*;𝑜𝑖|𝑥(𝑖)). As such, we apply KL divergence formulation to 𝐼(𝑎*;𝑜𝑖|𝑥(𝑖)) and obtain

𝐼(𝑎*;𝑜𝑖|𝑥(𝑖)) = DKL(𝑃𝑎*,𝑜|𝑥(𝑖)‖𝑃𝑎*𝑃𝑜|𝑥(𝑖)) (C20a)

=
∑︁
𝑎*

∫︁
𝑝(𝑎*,𝑜|𝑥(𝑖)) log

𝑝(𝑎*,𝑜|𝑥(𝑖))

𝑝(𝑎*)𝑝(𝑜|𝑥(𝑖))
𝑑𝑜 (C20b)

=
∑︁
𝑎*

𝑝(𝑎*)
∫︁
𝑝(𝑜|𝑎*,𝑥(𝑖)) log

𝑝(𝑜|𝑎*,𝑥(𝑖))

𝑝(𝑜|𝑥(𝑖))
𝑑𝑜 (C20c)

=
1

|ℱ|
∑︁
𝑎*

DKL(𝑃𝑜|𝑎*,𝑥(𝑖)‖𝑃𝑜|𝑥(𝑖)) (C20d)

≤ 1

|ℱ|2
∑︁
𝑎*,𝑎′

DKL(𝑃𝑜|𝑎*,𝑥(𝑖)‖𝑃𝑜|𝑎′,𝑥(𝑖)), (C20e)

where the third equality uses 𝑝(𝑎*,𝑜|𝑥(𝑖)) = 𝑝(𝑎*)𝑝(𝑜|𝑎*,𝑥(𝑖)), the fourth equality comes from the fact that 𝑎* is
uniformly sampled with 𝑝(𝑎*) = 1/|ℱ|, and the inequality employs the property of KL divergence.
Combining the above results, the mutual information is upper bounded by

𝐼(𝑎*; �̄�) ≤ 1

|ℱ|2
𝑛∑︁
𝑖=1

E𝑥(𝑖)∼[−𝜋,𝜋]𝑑
∑︁
𝑎*,𝑎′

DKL

(︀
𝑃𝑜|𝑎*,𝑥(𝑖)

⃦⃦
𝑃𝑜|𝑎′,𝑥(𝑖)

)︀
. (C21)

According to our assumption, when the shot number 𝑇 becomes large, the central limit theorem suggests that 𝑃𝑜|𝑎*,𝑥(𝑖)

follows the Gaussian distribution with the mean 𝜇𝑎*(𝑥(𝑖)) and the variance 𝜈2. Moreover, assuming that the variance
of the varied candidate is the same, we have

E𝑥(𝑖)∼[−𝜋,𝜋] DKL

(︀
𝑃𝑜|𝑎*,𝑥(𝑖)

⃦⃦
𝑃𝑜|𝑎′,𝑥(𝑖)

)︀
= E𝑥(𝑖)∼[−𝜋,𝜋]𝑑

(𝜇𝑎*(𝑥(𝑖))− 𝜇𝑎′(𝑥(𝑖)))2

2𝜈2
. (C22)

For the nominator in Eq. (C22), the result of Eq. (C9d) gives

E𝑥(𝑖)∼[−𝜋,𝜋]𝑑(𝜇𝑎*(𝑥(𝑖))− 𝜇𝑎′(𝑥(𝑖)))2 = E𝑥(𝑖)∼[−𝜋,𝜋]𝑑(𝑓𝑎*(𝑥(𝑖))− 𝑓𝑎′(𝑥(𝑖)))2 = 2𝜖𝐵2. (C23)

For the generic variance 𝜈2, it is derived as follows. When the state 𝜌𝑎(𝑥) is measured by 𝑂 = 𝐵𝑋, the probability
of measuring the state associated with the eigenvalue +1 and the state associated with the eigenvalue −1 is

P(+1)− P(−1) =
𝑓𝑎(𝑥

(𝑖))

𝐵
⇔ P(+1) =

1 + 𝑓𝑎(𝑥
(𝑖))/𝐵

2
, P(−) =

1− 𝑓𝑎(𝑥
(𝑖))/𝐵

2
. (C24)

This property indicates that when the shot number is 𝑇 , the explicit expression of the variance for the input 𝑥(𝑖) is

𝜈2𝑎(𝑥
(𝑖)) =

1

𝑇

[︁(︁
P(+) *𝐵2 + P(−) * (−𝐵)2

)︁
− 𝑓𝑎(𝑥

(𝑖))2
]︁
=
𝐵2

𝑇
− 𝑓𝑎(𝑥

(𝑖))2

𝑇
. (C25)
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Taking expectation over 𝑥, we have

𝜈 = E𝑥(𝑖)∼[−𝜋,𝜋]𝑑(𝜈
2
𝑎,𝑥(𝑖)) =

𝐵2

𝑇
−

E𝑥(𝑖)∼[−𝜋,𝜋]𝑑
(︀
𝑓𝑎(𝑥

(𝑖))2
)︀

𝑇
=
𝐵2 −𝐵2𝜖

𝑇
, (C26)

where the last equality uses the result of Eq. (C10).
In conjunction with Eqs. (C21), (C22), (C23), and (C26), the mutual information is upper bounded by

𝐼(𝑎*; �̄�) ≤ 𝑛𝜖𝑇

1− 𝜖
. (C27)

Note that the mutual information cannot continuously enhance with respect to the increased shot number 𝑇 . When
𝑇 → ∞, the mutual information is upper bounded by

lim
𝑇→∞

𝐼(𝑎*;𝑜1:𝑛) ≤ 𝐼(𝑎*; 𝜌1:𝑛). (C28)

Following the results [106, Lemma 9], the right-hand side term is upper bounded by the number of training examples
and the qubit count, i.e.,

𝐼(𝑎*; 𝜌1:𝑛) ≤ 𝑛𝑁 log 2. (C29)

Taken together, we have

𝐼(𝑎*; �̄�) ≤ 𝑛 ·min

{︂
𝜖𝑇

1− 𝜖
,𝑁 log 2

}︂
(C30)

Reusing the Fano’s inequality, we obtain

𝐼(𝑎*; �̄�) ≥ (1− P[𝑎* ̸= �̄�]) log |ℱ| − log 2 (C31a)

⇒ 𝑛 ·min

{︂
𝜖𝑇

1− 𝜖
,𝑁 log 2

}︂
≥ (1− P[𝑎* ̸= �̄�])𝑑− log 2 (C31b)

⇒ 𝑛 ≥ (1− P[𝑎* ̸= �̄�])𝑑− log 2

min
{︁
𝜖𝑇
1−𝜖 , 𝑁 log 2

}︁ . (C31c)

When 𝑇 ≤ (1−𝜖)
𝜖 𝑁 log 2, the lower bound of the sample complexity can be simplified to

𝑛 ≥ (1− 𝜖)
(1− P[𝑎* ̸= �̄�])𝑑− log 2

𝜖𝑇
. (C32)

SM D: Upper bound of the sample complexity when incoherently learning the dynamic with bounded-gates
(Proof of Theorem B.2)

In this section, we analyze the upper bound of the sample complexity when a learner can predict the output of
quantum circuits with bounded gates within a tolerable error. A restatement of the corresponding theorem is as
follows.

Theorem (Restatement of Theorem B.2). Consider a learner quires an 𝑁 -qubit quantum circuits and collects a
dataset 𝒯 = {𝑥(𝑖), 𝜌𝑇 (𝑥

(𝑖))}𝑛𝑖=1 containing 𝑛 training examples to predict unseen states 𝜌(𝑥) with 𝑥 ∈ [𝜋, 𝜋]𝑑. Suppose
with high probability, there exists a learned model ℎ(·, ·) that can achieve

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ(𝑥, 𝑂)− Tr(𝜌(𝑥), 𝑂)|2 ≤ 𝜖. (D1)

using training data of size

𝑛 ≤ ̃︀𝒪(︂𝐵2𝑑+𝐵2𝑁𝐺

𝜖

)︂
. (D2)
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Our proof is rooted in utilizing the packing net and packing number, which are advanced tools broadly used in
statistical learning theory [107] and quantum learning theory [66, 108, 109], to quantify the complexity of the class of
function represented by bounded-gate quantum circuits. For elucidating, in the following, we first introduce some basic
concepts and results that will be employed in our proof, followed by presenting the proof of Theorem B.2. Besides,
we emphasize that our current focus is solely on the sample complexity, which implies that the computational cost of
preparing the training examples may exhibit exponential scaling with the qubit number as indicated in Theorem B.3.

We now elaborate on how to use packing nets to derive the upper bound of the sample complexity of a learner tasked
with predicting the incoherent dynamics of bounded-gate quantum circuits. The formal definition of the packing net
and packing number is given below.

Definition 1 (Packing net/number). Let (𝒰 , d) be a metric space. The subset 𝒱 ⊂ 𝒰 is an 𝜖-packing net of 𝒰 if for
any 𝐴,𝐵 ∈ 𝒱, d(𝐴,𝐵) ≥ 𝜖. The packing number ℳ(𝒰 , 𝜖, d) denotes the largest cardinality of an 𝜖-packing net of 𝒰 .
Intuitively, an 𝜖 packing number refers to the maximum number of elements that can be 𝜖-separated.

We next leverage this definition to prove Theorem B.2. Following notations introduced in the main text, given an
observable 𝑂, the function space of quantum circuits with 𝐺 gates is

ℱ =
{︁
𝑓(𝑥, 𝑂) = Tr(𝜌(𝑥)𝑂)

⃒⃒⃒
𝑥 ∈ [−𝜋, 𝜋]𝑑,Arc(RZ,CI)

}︁
, (D3)

where 𝑥 ∈ [−𝜋, 𝜋]𝑑 is the classical input control, Arc(RZ,CI) refers to the set of circuit layouts formed by 𝑑 RZ
gates and 𝐺 − 𝑑 Clifford gates, and 𝜌(𝑥) is the quantum state generated by the bounded gates with 𝑥, i.e., 𝜌(𝑥) =
𝑈(𝑥)𝜌0𝑈(𝑥)† and the layout of 𝑈(𝑥) follows an element of Arc(RZ,CI). The diversity of circuit layouts stems from
the constraint that the learner can solely utilize the classical input and the corresponding measurement results to
infer the target concept, where prior information regarding the quantum circuit indicates that it comprises 𝐺 gates,
with 𝑑 RZ gates and 𝑑 − 𝐺 CI gates. From the perspective of the learner, the quantum computer can yield many
circuit layouts, leading that the function space ℱ contains in total |Arc(RZ,CI)| circuit layouts.

When the quantum computer is specified with an unknown but fixed circuit, the corresponding target concept is
denoted by 𝑓*(𝑥, 𝑂) ∈ ℱ . To infer 𝑓*(𝑥, 𝑂), in the training data collection procedure, the learner uniformly samples
𝑛 classical inputs {𝑥(𝑖)}𝑛𝑖=1 from [−𝜋, 𝜋]𝑑, sends them into the quantum computer, and obtains the corresponding
outcomes {𝑜(𝑖)}𝑛𝑖=1. The outcome 𝑜(𝑖) for ∀𝑖 ∈ [𝑛] is obtained by performing a single-shot measurement of 𝑂 (i.e.,
𝑇 = 1) on 𝜌(𝑥(𝑖)) with E[𝑜(𝑖)] = 𝑓*(𝑥(𝑖), 𝑂). Let the collected dataset be

𝒯 =
{︁(︁

𝑥(𝑖),𝑜(𝑖)
)︁}︁𝑛

𝑖=1
. (D4)

What we are interested in here is the required number of training examples 𝑛 in 𝒯 that allows the learner to produce
a prediction model ℎ𝒯 (·) whose prediction ℎ𝒯 (𝑥) is close to 𝑓*(𝑥) on average. More formally, the sample complexity
explored here refers to the minimal number of training examples 𝑛 to ensure that with probability 1− 𝛿, the expected
risk satisfies

E𝑥∼[−𝜋,𝜋]𝑑 |ℎ𝒯 (𝑥)− 𝑓*(𝑥)|2 ≤ 𝒪(𝜖). (D5)

Huang et al. [66] presented a method that is efficient in sample complexity (but maybe computationally demanding)
for solving this task. In particular, according to Definition 1, denote the 4𝜖-packing net of ℱ as ℱ𝑝

4𝜖. The learner
conducts the empirical risk minimization on the training dataset 𝒯 to estimate the optimal hypothesis, i.e.,

ℎ̂𝒯 = arg min
𝑓∈ℱ𝑝

4𝜖

1

𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒
𝑓(𝑥(𝑖))− 𝑜(𝑖)

⃒⃒⃒2
. (D6)

Under this formalism, Ref. [66] proved that the required number of training examples 𝑛 to achieve an 𝜖 prediction
error, as summarized in the following proposition.

Proposition D.1 (Adapted from Proposition 1, [66]). Suppose that the observable 𝑂 satisfies
∑︀
𝑖 ‖𝑂𝑖‖∞ ≤ 𝐵. Let

ℎ̂𝒯 be an element of the 4𝜖-packing net of ℱ with the packing number ℳ(ℱ , 4𝜖, | · |2) that minimizes the empirical
training error in Eq. (D6). Then for 𝛿 ∈ (0, 1), the size of training data

𝑛 ≥ 38𝐵2 log(4ℳ(ℱ , 4𝜖, | · |2)/𝛿)
𝜖

(D7)

implies

E𝑥∼[−𝜋,𝜋]𝑑
⃒⃒⃒
ℎ̂𝒯 (𝑥)− 𝑓*(𝑥)

⃒⃒⃒2
≤ 12𝜖 with probability at least 1− 𝛿. (D8)
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Remark. Note that although the original proof of Proposition D.1 only concerns ‖𝑂‖ ≤ 1, the pertinent proof can be
readily extended to the setting of

∑︀
𝑖 ‖𝑂𝑖‖∞ ≤ 𝐵 concerned in Theorem 1, and therefore we omit it here. Moreover,

it only focuses on the case of 𝑇 = 1, but the results still hold for the case of 𝑇 > 1. This is because in the extreme
case with 𝑇 → ∞, the required training data size is reduced to 𝑛 ≥ 38𝐵2 log(2ℳ(ℱ , 4𝜖, d)/𝛿)/𝜖 [66, Equation (C66)].
In this regard, the setting of 𝑇 ≥ 1 only trivially influences the sample complexity bound (at most logarithmically).
For this reason, we omit the relevant analysis in our proof.

Supported by Proposition D.1, the proof of Theorem B.2 amounts to quantifying the upper bound of the packing
number ℳ(ℱ , 𝜖, | · |2). Note that different from quantum neural networks [108–110] whose the hypothesis space is
continuous and the packing number depends on the value of 𝜖, the function class ℱ explored here is discrete and the
number of elements in this class finite. As a result, we have ℳ(ℱ , 𝜖, | · |2) ≤ |Arc(RZ,CI)| no matter how 𝜖 is. In light
of this fact, we are now ready to show the proof of Theorem B.2.

Proof of Theorem B.2. According to the above explanation, this proof is composed of two parts. The first part is to
quantify the upper bound of the packing number ℳ(ℱ , 𝜖, | · |2), or equivalently the cardinality of Arc(RZ,CI). And
the second part is combining the obtained packing number and Proposition D.1 to acquire the upper bound of the
sample complexity to learn ℱ .

We now derive the upper bound of |Arc(RZ,CI)|. The total number of possible layouts for an 𝑁 -qubit circuit
consisting with 𝑑 RZ gates and 𝐺− 𝑑 CI gates (i.e., CI = {𝐻,𝑆,CNOT}) is

|Arc(RZ,CI)| ≤
(︂
𝐺

𝑑

)︂
·𝑁𝑑 · 3𝐺−𝑑 ·

(︂
𝑁

2

)︂𝐺−𝑑
, (D9)

where the first term
(︀
𝐺
𝑑

)︀
computes the number of different arrangements for placing RZ or CI gates at each circuit

depth, the second term 𝑁𝑑 calculates the total combinations of placing 𝑑 RZ gates on different qubit wires, the third

term 3𝐺−𝑑 counts the total combinations of choosing different gates from the CI gate set, and the last term
(︀
𝑁
2

)︀𝐺−𝑑

calculates the upper bound for the total combinations of placing the selected CI gates on different qubit wires.

The sample complexity can be efficiently obtained by combining Proposition D.1 and Eq. (D9). That is, the metric
entropy of 4𝜖-packing net of ℱ yields

log(4ℳ(ℱ , 4𝜖, | · |)/𝛿) (D10a)

≤ log

(︂(︂
𝐺

𝑑

)︂)︂
+ 𝑑 log (𝑁) + (𝐺− 𝑑) log (3) + (𝐺− 𝑑) log

(︂(︂
𝑁

2

)︂)︂
+ log

(︂
4

𝛿

)︂
(D10b)

≤ 𝑑 log

(︂
𝑒𝐺

𝑑

)︂
+ 𝑑 log (𝑁) + (𝐺− 𝑑) log (3) + 2(𝐺− 𝑑)𝑁 log

(︂
𝑒𝑁

2

)︂
+ log

(︂
4

𝛿

)︂
, (D10c)

where the second inequality uses
(︀
𝑎
𝑏

)︀
≤ (𝑒𝑎/𝑏)𝑏.

The above result, accompanied by Proposition D.1, suggests the upper bound of the sample complexity to achieve
the 𝜖-prediction error, i.e.,

𝑛 =
38𝐵2

(︀
𝑑 log

(︀
𝑒𝐺
𝑑

)︀
+ 𝑑 log (𝑁) + (𝐺− 𝑑) log (3) + 2(𝐺− 𝑑)𝑁 log

(︀
𝑒𝑁
2

)︀
+ log

(︀
4
𝛿

)︀)︀
𝜖

(D11a)

≤ ̃︀𝒪(︂𝐵2𝑑+𝐵2𝑁𝐺

𝜖

)︂
. (D11b)

SM E: Exponential separation between computational complexity and sample complexity (Proof of
Theorem B.3)

We analyze the sample complexity of learning bounded-gate quantum circuits with incoherent measurements and
showcase the sample efficiency of this learning task in SM D. However, it is noteworthy that the sample efficiency does
not necessarily imply the computational efficiency, as identifying the desired training examples may incur exponential
running time. For instance, in the task of pretty-good tomography, the approach outlined in Ref. [4] requires only
a linear number of training examples with the qubit count 𝑁 for a low prediction error, yet the runtime cost scales
exponentially with 𝑁 .
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In this section, we prove that learning bounded-gate quantum circuits with incoherent measurements also manifests
an exponential separation between sample and computational complexity.

A very recent study [111] explores the computational hardness of learning quantum observables from the measured
out data. Here we first introduce some necessary definitions, and then briefly review their key results, followed by
elucidating how to generalize such results to our case to complete the proof of Theorem B.3.

The complexity class BQP. BQP (short for bounded-error quantum polynomial time) is the class of promise problems
that can be solved by polynomial-time quantum computations that may have some small probability to make an error
[112]. Let 𝐴 = (𝐴yes, 𝐴no) be a promise problem and let 𝑎, 𝑏 : N → [0, 1] be functions. Then 𝐴 ∈ BQP(𝑎, 𝑏)
if and only if there exists a polynomial-time generated family of quantum circuits 𝒬 = {𝒬𝑁 : 𝑁 ∈ N}, where
each circuit 𝒬𝑁 takes 𝑁 input qubits and produces one output qubit, that satisfies the following properties: (1) if
𝑥 ∈ 𝐴yes then Pr(𝒬 accepts 𝑥) ≥ 𝑎(|𝑥|), and (2) if 𝑥 ∈ 𝐴no then Pr(𝒬 accepts 𝑥) ≤ 𝑏(|𝑥|). The class is defined as
BQP = BQP(2/3, 1/3).

The complexity class HeurPD/poly. The complexity class HeurPD/poly refers to the class of languages L that can be

decided in HeurP/poly under the distribution D, i.e. HeurPD/poly = {L|(L,D) ∈ HeurP/poly}.
The formal statement of the result in Ref. [111] is summarized as followa.

Lemma E.1 (Adapted from Lemma 1, [111]). Define the concept class as

ℱHard =
{︁
𝑓(𝑥⊥) = Tr

(︀
𝑈 |𝑥⊥⟩ ⟨𝑥⊥|𝑈†𝑂

)︀ ⃒⃒⃒
𝑥⊥ ∈ {−1, 1}𝑁 , 𝑂 ∼ D𝑂

}︁
, (E1)

where 𝑥⊥ specifies the initial state |𝑥⊥⟩, 𝑈 denotes the quantum circuit containing at most a polynomial number of
quantum gates and 𝑂 refers to a linear combination of local Pauli strings sampled from a prior distribution D𝑂.

Under the assumption that there exists a distribution D′ such that BQP ̸⊂ HeurPD′
/poly, then for any BQP-complete

language, there exists an associated input distribution D such that no randomized algorithm that can solely use the
collected measure-out data to output a prediction model ℎ(𝑥), which learns the concept class ℱHard in a polynomial
time. Note that the learning algorithm is said to successfully learn ℱHard if for any 𝑓 ∈ ℱHard, it can output a prediction
model ℎ(𝑥) that satisfies E𝑥∼D[|𝑓(𝑥)− ℎ(𝑥)|2] ≤ 𝜖 with high probability.

It is noteworthy that the terminology ‘learning by measure-out data’ appeared in the above lemma is identical to
the learning paradigm investigated in this work. More precisely, the learner is restrictive to collect information from
quantum systems within a polynomial time (i.e., applying a polynomial number of measurement in total). Once the
data collection process is completed, the learner utilize the collected data to infer the prediction model ℎ(𝑥) on the
classical side.

The main idea of the proof for Lemma E.1 is as follows. First, the authors correlate ℱHard with BQP circuits.
In particular, the unitary in ℱHard is specified to be a family of quantum circuit {𝑈BQP𝑁 }, which decides the BQP-
complete language L, one circuit per size; the observable is set as 𝑂 = 𝑍 ⊗ 𝐼2 ⊗ · · · ⊗ 𝐼2. In this way, the output of
quantum circuits can correctly decide every 𝑥⊥ ∈ L, i.e., 𝑓(𝑥⊥) > 0 if 𝑥 ∈ L and 𝑓(𝑥⊥) < 0 if 𝑥 /∈ L. Then, the
authors show that if there exists a classical algorithm that solely utilizes the measure-out data to learn ℱHard in a
polynomial time, then such algorithm could decide any BQP language on average, which implies BQP ⊆ HeurPD/poly
for any D. However, under widely believed assumptions, for any BQP complete language L there always exists a
distribution such that (L,D) ̸⊂ HeurP/poly, indicating such classical algorithm cannot exist.

We next generalize the results of Lemma E.1 to show the computational hardness of learning the bounded-gate
circuit with incoherent dynamics. To achieve this goal, it is sufficient to show the concept class ℱ in Eq. (3) contains
the class of BQP circuits discussed above. Recall the definition of ℱ . As for the observable 𝑍 ⊗ 𝐼2 ⊗ · · · ⊗ 𝐼2, it
meets the requirement of the observable defined in ℱ , which is formed by Pauli operators with a bounded norm. As

for the state 𝑈BQP |𝑥⊥⟩, it can also be expressed by the bounded-gate circuit {RZ+CI} with the initial state |0⟩⊗𝑁 .
Specifically, the bounded-gate circuit is decomposed into two parts, where the first part is used to prepare the state
|𝑥⊥⟩ and the second part is to prepare the BQP circuit. For the first part, 𝑁 RZ gates and 𝒪(𝑁) CI gates associated
with a proper distribution are sufficient to prepare any input state |𝑥⊥⟩ with 𝑥⊥ ∈ {0, 1}𝑁 . For the second part, since
𝑈BQP contains at most 𝒪(𝑝𝑜𝑙𝑦(𝑁)) quantum gates and {RZ+CI} is a universal basis gate set, 𝒪(𝑝𝑜𝑙𝑦(𝑁)) RZ gates
with a proper distribution over the classical inputs and 𝒪(𝑝𝑜𝑙𝑦(𝑁)) CI gates are sufficient to synthesis 𝑈BQP. Taken
together, the BQP circuit belongs to ℱ when the number of {RZ+CI} gates polynomially scale with 𝑁 . However,
according to the results of Lemma E.1, no algorithm can only use the measure-out data to learn this circuit within a
polynomial time. This proves Theorem B.3.
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SM F: Learnability of the proposed kernel-based ML model (Proof of Theorem 2)

This section provides the proof of Theorem 2, which analyzes how the prediction error of the proposed kernel-based
ML model depends on the number of training examples 𝑛, the size of the quantum system 𝑁 , and the dimension of
classical inputs 𝑑. Recall that in the main text, the proposed state prediction model is

�̂�𝑛(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝜅Λ

(︁
𝑥,𝑥(𝑖)

)︁
𝜌𝑇 (𝑥

(𝑖)) with 𝜅Λ

(︁
𝑥,𝑥(𝑖)

)︁
=

∑︁
𝜔,‖𝜔‖0≤Λ

2‖𝜔‖0Φ𝜔(𝑥)Φ𝜔(𝑥
(𝑖)) ∈ R. (F1)

What we intend to prove is the average discrepancy between Tr(�̂�𝑛(𝑥)𝑂) and the ground truth Tr(𝜌(𝑥)𝑂) when 𝑥 is
uniformly and randomly sampling from [−𝜋, 𝜋]𝑑 and the local observable 𝑂 is sampled from a prior distribution D𝑂,
i.e., E𝑥∼[−𝜋,𝜋]𝑑 |Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌(𝑥))|2.
Before moving to proceed with the further analysis, let us exhibit the formal statement of Theorem 2.

Theorem (Restatement of Theorem 2). Following notations in the main text, consider a parametrized family of
𝑁 -qubit states 𝒬 and a sum 𝑂 =

∑︀
𝑖=1𝑂𝑖 of multiple local observables with

∑︀
𝑖 ‖𝑂𝑖‖∞ ≤ 𝐵 and the maximum locality

of {𝑂𝑖} being 𝐾. Suppose E𝑥∼[−𝜋,𝜋]𝑑‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 ≤ 𝐶. Then, let the dataset be 𝒯s = {𝑥(𝑖) → 𝜌(𝑥(𝑖))}𝑛𝑖=1 with

𝑥(𝑖) ∼ Unif[−𝜋, 𝜋]𝑑 and 𝑛 = |C(Λ)| 2𝐵29𝐾

𝜖 log (2 · |C(Λ)|/𝛿) with C(Λ) = {𝜔|𝜔 ∈ {0,±1}𝑑, 𝑠.𝑡. ‖𝜔‖0 ≤ Λ}. When the
frequency is truncated to Λ = 4𝐶/𝜖, the state prediction model in Eq. (F1) achieves

E𝒯s [�̂�𝑛(𝑥)] = 𝜌Λ(𝑥) (F2)

and with probability at least 1− 𝛿,

E𝑥∼[−𝜋,𝜋]𝑑 |Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌(𝑥))|2 ≤ 𝜖. (F3)

To reach Theorem 2, we first use the triangle inequality to decouple the difference between the prediction and
ground truth into the truncation error and the estimation error, i.e.,

E𝑥∼[−𝜋,𝜋]𝑑
[︁
|Tr (𝑂�̂�𝑛(𝑥))− Tr (𝑂𝜌(𝑥))|2

]︁
(F4a)

≤
(︃√︂

E𝑥∼[−𝜋,𝜋]𝑑
[︁
|Tr (𝑂𝜌Λ(𝑥))− Tr(𝑂𝜌(𝑥))|2

]︁
+

√︂
E𝑥∼[−𝜋,𝜋]𝑑

[︁
|Tr (𝑂𝜎𝑛(𝑥))− Tr(𝑂𝜌Λ(𝑥))|2

]︁)︃2

. (F4b)

After decoupling, we then separately derive the upper bound of these two terms, where the relevant results are
encapsulated in the following two lemmas whose proofs are given in the subsequent two subsections.

Lemma F.1 (Truncation error of 𝜌Λ). Following notations in Theorem 2, assuming E𝑥∼[−𝜋,𝜋]𝑑‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 ≤ 𝐶,
the truncation error induced by removing high-frequency terms of 𝜌 under the trigonometric expansion with ‖𝜔‖0 ≤ Λ
is upper bounded by

E𝑥∼[−𝜋,𝜋]𝑑 |Tr(𝑂𝜌Λ(𝑥)− Tr(𝑂𝜌(𝑥))|2 ≤ 𝐶

Λ
. (F5)

Lemma F.2 (Estimation error of �̂�𝑛). Following notations in Theorem 2, with probability at least 1−𝛿, the estimation
error induced by finite training examples 𝒯 = {𝜌(𝑥(𝑖))}𝑛𝑖=1 is upper bounded by

E𝑥∼[−𝜋,𝜋]𝑑
[︁
|Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌Λ(𝑥))|2

]︁
≤ |C(Λ)| 1

2𝑛
𝐵29𝐾 log

(︂
2 · |C(Λ)|

𝛿

)︂
, (F6)

where C(Λ) = {𝜔|𝜔 ∈ {0,±1}𝑑, 𝑠.𝑡. ‖𝜔‖0 ≤ Λ} refers to the set of truncated frequencies.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. The difference between the prediction and ground truth can be obtained by integrating Lem-
mas F.1 and F.2 into Eq. (F4a). Mathematically, with probability at least 1− 𝛿, we have

E𝑥∼[−𝜋,𝜋]𝑑
[︁
|Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌(𝑥))|2

]︁
≤
(︃√︂

𝐶

Λ
+

√︃
|C(Λ)| 1

2𝑛
𝐵29𝐾 log

(︂
2 · |C(Λ)|

𝛿

)︂)︃2

. (F7)
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To ensure the average prediction error is upper bounded by 𝜖, it is sufficient to showcase when the inner two terms
are upper bounded by

√
𝜖/2. For the first term, the condition is satisfied when√︂

𝐶

Λ
≤

√
𝜖

2
⇔ Λ ≥ 4𝐶

𝜖
. (F8)

For the second term, we have√︃
|C(Λ)| 1

2𝑛
𝐵29𝐾 log

(︂
2 · |C(Λ)|

𝛿

)︂
≤

√
𝜖

2
⇔ 𝑛 ≥ |C(Λ)|2𝐵

29𝐾

𝜖
log

(︂
2 · |C(Λ)|

𝛿

)︂
. (F9)

Taken together, with probability 1 − 𝛿, the prediction error is upper bounded by 𝜖 when the number of training
examples satisfies

𝑛 ≥ |C(4𝐶/𝜖)|2𝐵
29𝐾

𝜖
log

(︂
2 · |C(4𝐶/𝜖)|

𝛿

)︂
. (F10)

1. Truncation error of the classical learning model (Proof of Lemma F.1)

Recall that under the trigonometric monomial expansion, the target state 𝜌 with truncation and without truncation
takes the form as

𝜌Λ =
∑︁

𝜔∈C(Λ)

Φ𝜔(𝑥)𝜌𝜔 and 𝜌 =
∑︁

𝜔∈C(𝑑)

Φ𝜔(𝑥)𝜌𝜔, (F11)

respectively. The purpose of Lemma F.1 is to analyze the upper bound of the discrepancy between Tr(𝜌Λ𝑂) and
Tr(𝜌𝑂) induced by the truncation of high-frequency terms.

Proof of Lemma F.1. By adopting the explicit trigonometric monomial expansion of 𝜌 and 𝜌Λ in Eq. (F11), we have

E𝑥∼[−𝜋,𝜋]𝑑 |Tr(𝑂𝜌Λ(𝑥)− Tr(𝑂𝜌(𝑥))|2 (F12a)

= E𝑥∼[−𝜋,𝜋]𝑑

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜔,‖𝜔‖0>Λ

Φ𝜔(𝑥)⟨⟨𝜌𝜔|𝑂⟩⟩

⃒⃒⃒⃒
⃒⃒
2

(F12b)

= E𝑥∼[−𝜋,𝜋]𝑑
∑︁

𝜔,‖𝜔‖0>Λ

∑︁
𝜔′,‖𝜔′‖0>Λ

Φ𝜔(𝑥)Φ𝜔′(𝑥)⟨⟨𝜌𝜔|𝑂⟩⟩⟨⟨𝜌𝜔′ |𝑂⟩⟩ (F12c)

=
∑︁

𝜔,‖𝜔‖0>Λ

∑︁
𝜔′,‖𝜔′‖0>Λ

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥)Φ𝜔′(𝑥)⟨⟨𝜌𝜔|𝑂⟩⟩⟨⟨𝜌𝜔′ |𝑂⟩⟩d𝑑𝑥 (F12d)

=
∑︁

𝜔,‖𝜔‖0>Λ

∑︁
𝜔′,‖𝜔′‖0>Λ

2−‖𝜔‖0𝛿𝜔,𝜔′⟨⟨𝜌𝜔|𝑂⟩⟩⟨⟨𝜌𝜔′ |𝑂⟩⟩ (F12e)

=
∑︁

𝜔,‖𝜔‖0>Λ

2−‖𝜔‖0 |⟨⟨𝜌𝜔|𝑂⟩⟩|2 :=
∑︁

𝜔,‖𝜔‖0>Λ

2−‖𝜔‖0𝛼2
𝜔, (F12f)

where the first three equalities follow a direct reformulation, Eq. (F12e) employs the orthogonality of basis functions
in the trigonometric expansion, i.e.,

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥)Φ𝜔′(𝑥)d𝑑𝑥 = 2−‖𝜔‖0𝛿𝜔,𝜔′ , (F13)

and in the last equality we define 𝛼𝜔 ≡ Tr(𝜌𝜔𝑂) for clarification.
The remainder of the proof uses the assumption of the norm of the gradients of the expectation, i.e.,

‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 ≤ 𝐶, to derive the upper bound of Eq. (F12f). To do so, we first derive the explicit form of
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the gradient under the trigonometric monomial expansion. That is, the gradient of Tr(𝜌(𝑥)𝑂) with respect to 𝑥 is a
𝑑-dimensional vector, i.e.,

∇𝑥 Tr(𝜌(𝑥)𝑂) (F14a)

= ∇𝑥

∑︁
𝜔

Φ𝜔(𝑥) Tr(𝜌𝜔𝑂)

=
∑︁
𝜔

∇𝑥Φ𝜔(𝑥)𝛼𝜔 (F14b)

=
[︁∑︁

𝜔

Ψ𝜔1(𝑥1)Φ𝜔2:𝑑
(𝑥2:𝑑)𝛼𝜔, · · · ,

∑︁
𝜔

Φ𝜔1:𝑖−1(𝑥1:𝑖−1)Ψ𝜔𝑖(𝑥𝑖)Φ𝜔𝑖+1:𝑑
(𝑥𝑖+1:𝑑)𝛼𝜔, (F14c)

· · · ,
∑︁
𝜔

Ψ𝜔1:𝑑−1
(𝑥1:𝑑−1)Ψ𝜔𝑑

(𝑥𝑑)𝛼𝜔

]︁⊤
∈ R𝑑, (F14d)

where Φ𝜔𝑎:𝑏
(𝑥𝑎:𝑏) ≡

∏︀𝑏
𝑖=𝑎Φ𝜔𝑖

(𝑥𝑖), and the derivative with respect to the 𝑖-th entry is

Ψ𝜔𝑖(𝑥𝑖) ≡ ∇𝑥𝑖Φ𝜔𝑖(𝑥𝑖) =

⎧⎪⎨⎪⎩
0 if 𝜔𝑖 = 0

− sin(𝑥𝑖) if 𝜔𝑖 = 1

cos(𝑥𝑖) if 𝜔𝑖 = −1

. (F15)

By making use of the above formula, the expectation value of ‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 over 𝑥 ∼ Unif[−𝜋, 𝜋]𝑑 satisfies

E𝑥∼[−𝜋,𝜋]𝑑‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 (F16a)

=
1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

[︃(︃∑︁
𝜔

Ψ𝜔1
(𝑥1)Φ𝜔2:𝑑

(𝑥2:𝑑)𝛼𝜔

∑︁
𝜔′

Ψ𝜔′
1
(𝑥1)Φ𝜔′

2:𝑑
(𝑥2:𝑑)𝛼𝜔′

)︃
+ · · · (F16b)

+

(︃∑︁
𝜔

Φ𝜔1:𝑖−1
(𝑥1:𝑖−1)Ψ𝜔𝑖

(𝑥𝑖)Φ𝜔𝑖+1:𝑑
(𝑥𝑖+1:𝑑)𝛼𝜔

∑︁
𝜔′

Φ𝜔′
1:𝑖−1

(𝑥1:𝑖−1)Ψ𝜔′
𝑖
(𝑥𝑖)Φ𝜔′

𝑖+1:𝑑
(𝑥𝑖+1:𝑑)𝛼𝜔′

)︃
+ · · ·(F16c)

+

(︃∑︁
𝜔

Φ𝜔1:𝑑−1
(𝑥1:𝑑−1)Ψ𝜔𝑑

(𝑥𝑑)𝛼𝜔

∑︁
𝜔′

Φ𝜔′
1:𝑑−1

(𝑥1:𝑑−1)Ψ𝜔′
𝑑
(𝑥𝑑)𝛼𝜔′

)︃]︃
d𝑑𝑥 (F16d)

=
1

(2𝜋)𝑑

[︃
𝜋

∫︁
[−𝜋,𝜋]𝑑−1

⎛⎝∑︁
𝜔2:𝑑

Φ𝜔2:𝑑
(𝑥2:𝑑)𝛼1,𝜔2:𝑑

∑︁
𝜔′

2:𝑑

(𝑥1)Φ𝜔′
2:𝑑

(𝑥2:𝑑)𝛼1,𝜔′
2:𝑑

⎞⎠ d𝑑−1𝑥+ · · · (F16e)

+𝜋

∫︁
[−𝜋,𝜋]𝑑−1

⎛⎝∑︁
𝜔2:𝑑

Φ𝜔2:𝑑
(𝑥2:𝑑)𝛼−1,𝜔2:𝑑

∑︁
𝜔′

2:𝑑

(𝑥1)Φ𝜔′
2:𝑑

(𝑥2:𝑑)𝛼−1,𝜔′
2:𝑑

⎞⎠ d𝑑−1𝑥+ · · · (F16f)

+𝜋

∫︁
[−𝜋,𝜋]𝑑−1

⎛⎝ ∑︁
𝜔1:𝑑−1

Φ𝜔1:𝑑−1
(𝑥1:𝑑−1)𝛼𝜔1:𝑑−1,1

∑︁
𝜔′

1:𝑑−1

Φ𝜔′
1:𝑑−1

(𝑥1:𝑑−1)𝛼𝜔′
1:𝑑−1,1

⎞⎠ d𝑑−1𝑥 (F16g)

+𝜋

∫︁
[−𝜋,𝜋]𝑑−1

⎛⎝ ∑︁
𝜔1:𝑑−1

Φ𝜔1:𝑑−1
(𝑥1:𝑑−1)𝛼𝜔1:𝑑−1,−1

∑︁
𝜔′

1:𝑑−1

Φ𝜔′
1:𝑑−1

(𝑥1:𝑑−1)𝛼𝜔′
1:𝑑−1,−1

⎞⎠ d𝑑−1𝑥

]︃
(F16h)

=

[︃∑︁
𝜔2:𝑑

2−‖[1,𝜔2:𝑑]‖0 |𝛼1,𝜔2:𝑑
|2 +

∑︁
𝜔2:𝑑

2−‖[−1,𝜔2:𝑑]‖0 |𝛼−1,𝜔2:𝑑
|2 + · · · (F16i)

+
∑︁

𝜔1:𝑑−1

2−‖[𝜔1:𝑑−1,1]‖0 |𝛼𝜔1:𝑑−1,1
|2 +

∑︁
𝜔1:𝑑−1

2−‖[𝜔1:𝑑−1,−1]‖0 |𝛼𝜔1:𝑑−1,−1
|2
]︃
:= ⋆, (F16j)

where Eqs. (F16e)-(F16h) are obtained by taking the expectation value on the gradient term Ψ𝜔𝑖 for ∀𝑖 ∈ [𝑑], the
quantity 𝛼±1,𝜔2:𝑑

refers to Tr(𝜌±1,𝜔2:𝑑
𝑂) with the frequency value at the 1-st position being ±1 (the same rule applies

to other terms such as 𝛼𝜔1:𝑖,𝑖+1,𝜔𝑖+2:𝑑
), and Eq. (F16j) is obtained by taking integral over each term in the bracket

and the orthogonality of basis functions in Φ𝜔(𝑥) and Φ𝜔′(𝑥) as shown in Eq. (F13).
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We now use the reformulated E𝑥∼[−𝜋,𝜋]‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 to derive the upper bound of the truncation error. Namely,
Eq. (F12f) can be reformulated as

E𝑥∼[−𝜋,𝜋]𝑑 |Tr(𝑂𝜌Λ(𝑥)− Tr(𝑂𝜌(𝑥))|2 (F17a)

=
∑︁

𝜔,‖𝜔‖0>Λ

2−‖𝜔‖0 |𝛼𝜔|2 (F17b)

=
1

Λ

⎛⎝Λ
∑︁

𝜔,‖𝜔‖0>Λ

2−‖𝜔‖0 |𝛼𝜔|2
⎞⎠ (F17c)

≤ E𝑥∼[−𝜋,𝜋]‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22
Λ

, (F17d)

≤ 𝐶

Λ
, (F17e)

where the last second inequality is support by the result indicated below and the last inequality is supported by the
assumption E𝑥∼[−𝜋,𝜋]‖∇𝑥 Tr(𝜌(𝑥)𝑂)‖22 ≤ 𝐶.

The proof of Eq. (F17d). According to Eq. (F16j), to reach Eq. (F17d), it is equivalent to proving that for ∀Λ ∈ [𝑑],

Λ
∑︁

𝜔,‖𝜔‖0>Λ

2−‖𝜔‖0 |𝛼𝜔|2 ≤ ⋆. (F18)

Note that depending on the number of non-zero entries of the frequency (i.e., ‖𝜔‖0), the left and right hand sides in
Eq. (F18) can be decomposed into 𝑑 − Λ parts and 𝑑 − 1 parts, respectively. Mathematically, the left hand side of
Eq. (F18) yields

Λ

⎛⎝ ∑︁
𝜔,‖𝜔‖0=Λ+1

2−‖𝜔‖0 |𝛼𝜔|2 +
∑︁

𝜔,‖𝜔‖0=Λ+2

2−‖𝜔‖0 |𝛼𝜔|2 + · · ·+
∑︁

𝜔,‖𝜔‖0=𝑑

2−‖𝜔‖0 |𝛼𝜔|2
⎞⎠ . (F19)

Besides, the right hand side of Eq. (F18), i.e., ⋆, can be rewritten as

⋆ =

[︃(︂ ∑︁
𝜔2:𝑑,‖𝜔2:𝑑‖0=0

2−‖[1,𝜔2:𝑑]‖0 |𝛼1,𝜔2:𝑑
|2 + · · ·+

∑︁
𝜔2:𝑑,‖𝜔2:𝑑‖=𝑑−1

2−‖[1,𝜔2:𝑑]‖0 |𝛼1,𝜔2:𝑑
|2
)︂

(F20)

+ · · · (F21)

+

(︂ ∑︁
𝜔1:𝑑−1,‖𝜔1:𝑑−1‖0=1

2−‖[𝜔1:𝑑−1,−1]‖0 |𝛼𝜔1:𝑑−1,−1
|2 + · · ·+

∑︁
𝜔1:𝑑−1,‖𝜔1:𝑑−1‖0=𝑑−1

2−‖[𝜔1:𝑑−1,−1]‖0 |𝛼𝜔1:𝑑−1,−1
|2
)︂]︃
(F22)

=

(︂ ∑︁
𝜔2:𝑑,‖𝜔2:𝑑‖0=0

2−‖[1,𝜔2:𝑑]‖0 |𝛼1,𝜔2:𝑑
|2 + · · ·

∑︁
𝜔1:𝑑−1,‖𝜔1:𝑑−1‖0=0

2−‖[𝜔1:𝑑−1,−1]‖0 |𝛼𝜔1:𝑑−1,−1
|2
)︂

(F23)

+ · · · (F24)

+

⎛⎝ ∑︁
𝜔2:𝑑,‖𝜔2:𝑑‖0=𝑑−1

2−‖[1,𝜔2:𝑑]‖0 |𝛼1,𝜔2:𝑑
|2 + · · ·+

∑︁
𝜔1:𝑑−1,‖𝜔1:𝑑−1‖0=𝑑−1

2−‖[𝜔1:𝑑−1,−1]‖0 |𝛼𝜔1:𝑑−1,−1
|2
⎞⎠ , (F25)

where the second equality is acquired by rearranging, as in every bracket, all frequencies have the same number of
non-zero entries.

In conjunction with Eqs. (F19) and (F25), to achieve Eq. (F18), we need to demonstrate that for any Λ < Λ′ < 𝑑,
the following relation is satisfied, i.e.,

Λ
∑︁

𝜔,‖𝜔‖0=Λ′

2−‖𝜔‖0 |𝛼𝜔|2 ≤
∑︁

𝜔2:𝑑,‖𝜔2:𝑑‖0=Λ′−1

2−‖[1,𝜔2:𝑑]‖0 |𝛼1,𝜔2:𝑑
|2+· · ·+

∑︁
𝜔1:𝑑−1,‖𝜔1:𝑑−1‖0=Λ′−1

2−‖[𝜔1:𝑑−1,−1]‖0 |𝛼𝜔1:𝑑−1,−1
|2.

(F26)
To achieve this goal, we next prove that the right hand side in Eq. (F26) equals to

Λ′ ∑︁
𝜔,‖𝜔‖0=Λ′

2−‖𝜔‖0 |𝛼𝜔|2, with Λ < Λ′ < 𝑑. (F27)
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Recall that in Eq. (F27), each frequency 𝜔 ∈ {0,±1}𝑑 with ‖𝜔‖0 = Λ′ appears Λ′ times and the total number of
frequencies is

Λ ·
⃒⃒⃒{︁
𝜔 ∈ {0,±1}𝑑

⃒⃒⃒
‖𝜔‖0 = Λ′

}︁⃒⃒⃒
= Λ ·

⃒⃒⃒⃒(︂
𝑑

𝑑− Λ′

)︂⃒⃒⃒⃒
· 2Λ′

= Λ′ 𝑑!

(𝑑− Λ′)!Λ′!
2Λ

′
=

𝑑!

(𝑑− Λ′)!(Λ′ − 1)!
2Λ

′
. (F28)

In addition, the total number of frequencies in the right hand side of Eq. (F26) is(︂
𝑑− 1

𝑑− Λ′ − 1

)︂
2Λ

′
+· · ·+

(︂
𝑑− 1

𝑑− Λ′ − 1

)︂
2Λ

′
= 𝑑·

(︂
𝑑− 1

𝑑− Λ′ − 1

)︂
2Λ

′
= 𝑑

(𝑑− 1)!

(𝑑− Λ′)(Λ′ − 1)
2Λ

′
=

𝑑!

(𝑑− Λ′)(Λ′ − 1)
2Λ

′
. (F29)

±1𝝎 = 	 [±1,𝝎!:#] 0,±1 0,±10,±10,±10,±1 0,±10,±1…

𝑑

0,±1𝝎 = 	 [𝝎$ ,±1:𝝎%:#] ±1 0,±10,±10,±10,±1 0,±10,±1…

0,±1𝝎 = 	 [𝝎$:! ,±1:𝝎&:# ] 0,±1 ±1 0,±10,±10,±1 0,±10,±1…

…

0,±1𝝎 = 	 [𝝎$:#'$ , ±1] 0,±10,±10,±10,±10,±1 0,±1 ±1…

𝝎+ = 	 [0,1,0,1,0,… , 1]

𝑑

Number of zero
entries is d− Λ′

±1 0,±1 0,±10,±10,±10,±1 0,±10,±1…

0,±1 ±1 0,±10,±10,±10,±1 0,±10,±1…

0,±10,±1 ±1 0,±10,±10,±1 0,±10,±1…

0,±10,±10,±10,±10,±10,±1 0,±1 ±1…

𝝎+ $

𝝎+ % …

Figure F.5: A visual interpretation about the appearance times of �̃� in the right hand side of Eq. (F26).

Combining with the above two equations, we know that the total number of frequencies in Eq. (F27) and the right
hand side of Eq. (F26) is the same. Accordingly, their equivalence can be reached if we can show that each frequency
𝜔 ∈ {0,±1}𝑑 with ‖𝜔‖0 = Λ′ appears Λ′ times in the right hand side of Eq. (F26). This is indeed the case, as the
visual interpretation is shown in Fig. F.5. Denote that the specified frequency as �̃� with ‖�̃�‖0 = Λ′. In other words,
there are 𝑑 − Λ′ entries whose value is 0. This property allows us to determining how many times of �̃� appearing
in the right side of Eq. (F26). In particular, as shown in the left panel of Fig. F.5, the right hand side of Eq. (F26)
can be divided into 𝑑 groups, depending on the location of ±1. Note that among these 𝑑 groups, every entry with
the value 0 in �̃� precludes one group and only 𝑑− (𝑑− Λ′) = Λ′ feasible groups are preserved, as shown in the right
panel of Fig. F.5. Moreover, for each feasible group, �̃� can only appear once, because of the orthogonality of different
frequencies. Consequently, we obtain that each frequency �̃� ∈ {0,±1}𝑑 with ‖�̃�‖0 = Λ′ appears Λ′ times, indicating
that the right hand side in Eq. (F26) equals to Eq. (F27).

In other words, we achieve

⋆ =

𝑑∑︁
Λ′=1

Λ′ ∑︁
𝜔,‖𝜔‖0=Λ′

2−‖𝜔‖0 |𝛼𝜔|2 (F30)

⇒ ⋆ =
∑︁

𝜔,‖𝜔‖0>Λ

‖𝜔‖02−‖𝜔‖0 |𝛼𝜔|2 +
∑︁

𝜔,Λ≥‖𝜔‖0≥1

‖𝜔‖02−‖𝜔‖0 |𝛼𝜔|2 (F31)

⇒ ⋆ ≥
∑︁

𝜔,‖𝜔‖0>Λ

‖𝜔‖02−‖𝜔‖0 |𝛼𝜔|2 (F32)

⇒ ⋆ ≥ Λ
∑︁

𝜔,‖𝜔‖0>Λ

2−‖𝜔‖0 |𝛼𝜔|2. (F33)

Taken together, the truncation error can be upper bounded by the averaged gradient norm of the specified circuit.

2. Estimation error of the classical learning model (Proof of Lemma F.2)

The core of the proof is to show that the state prediction model �̂�𝑛(𝑥) in Eq. (F1) is equal to the trigonometric
expansion of the truncated target quantum state 𝜌Λ(𝑥) if we take the expectation over the training data, which
includes the randomness from the sampled inputs 𝑥(𝑖) and classical shadow. With this relation in mind, we can
quantify the estimation error of the proposed state prediction model �̂�𝑛(𝑥) when calculating the expectation value of
an unseen state under the specified observable 𝑂, i.e., E𝑥∼[−𝜋,𝜋]𝑑 [|Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌Λ(𝑥))|2].
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Proof of Lemma F.2. We first prove the equivalence between the expectation of the classical representations and the
target quantum state, i.e., E𝒯 [�̂�𝑛(𝑥)] = 𝜌Λ(𝑥). Following the explicit form of �̂�𝑛(𝑥) in Eq. (F1), we obtain

E𝒯 [�̂�𝑛(𝑥)] =
1

𝑛

𝑛∑︁
𝑖=1

E𝑥(𝑖)∼[−𝜋,𝜋]𝑑
[︁
𝜅Λ

(︁
𝑥,𝑥(𝑖)

)︁]︁
E
𝑠
(𝑥(𝑖))
1 ,...,𝑠

(𝑥(𝑖))
𝑁

𝜌1(𝑥
(𝑖)) (F34a)

= E𝑥(1)∼[−𝜋,𝜋]𝑑
[︁
𝜅Λ

(︁
𝑥,𝑥(1)

)︁]︁
𝜌(𝑥(1)) (F34b)

= E𝑥(1)∼[−𝜋,𝜋]𝑑
∑︁

𝜔,‖𝜔‖0≤Λ

2‖𝜔‖0Φ𝜔(𝑥)Φ𝜔(𝑥
(1))𝜌(𝑥(1)) (F34c)

=
∑︁

𝜔,‖𝜔‖0≤Λ

Φ𝜔(𝑥)2
‖𝜔‖0E𝑥(1)∼[−𝜋,𝜋]𝑑Φ𝜔(𝑥

(1))𝜌(𝑥(1)) (F34d)

=
∑︁

𝜔,‖𝜔‖0≤Λ

Φ𝜔(𝑥)2
‖𝜔‖0

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥
(1))𝜌(𝑥(1))d𝑑𝑥(1) (F34e)

=
∑︁

𝜔,‖𝜔‖0≤Λ

Φ𝜔(𝑥)2
‖𝜔‖0

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥
(1))

∑︁
𝜔′

Φ𝜔′(𝑥)𝜌𝜔d
𝑑𝑥(1) (F34f)

=
∑︁

𝜔,‖𝜔‖0≤Λ

Φ𝜔(𝑥)2
‖𝜔‖0

∑︁
𝜔′

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥
(1))Φ𝜔′(𝑥(1))𝜌𝜔d

𝑚𝑥(1) (F34g)

=
∑︁

𝜔,‖𝜔‖0≤Λ

Φ𝜔(𝑥)𝜌𝜔 (F34h)

= 𝜌Λ(𝑥), (F34i)

where 𝑠
(𝑥(𝑖))
𝑗 denotes the randomized measurement outcome for the 𝑗-th qubit for the state 𝜌(𝑥(𝑖)) with 𝑠

(𝑥(𝑖))
𝑗 ∈

{|0⟩ , |1⟩ , |±⟩ , |±𝚤⟩}, Eq. (F34b) uses the fact that each 𝑥(𝑖) is sampled independently and uniformly from [−𝜋, 𝜋]𝑑,
Eq. (F34c) employs the explicit formula of the truncated trigonometric monomial kernel 𝜅Λ, Eq. (F34f) adopts trigono-
metric expansion of the quantum state, i.e., 𝜌(𝑥(𝑖)) =

∑︀
𝜔 Φ𝜔(𝑥

(𝑖))𝜌𝜔, and Eq. (F34h) comes from the orthogonality
of basis functions in Eq. (F13).

To complete the proof, we next move to analyze the estimation error E𝑥∼[−𝜋,𝜋]𝑑 [|Tr(𝑂�̂�𝑛(𝑥)) − Tr(𝑂𝜌Λ(𝑥))|2].
Define

𝐴𝜔 =
1

𝑛

𝑛∑︁
𝑖=1

2‖𝜔‖0Φ𝜔(𝑥
(𝑖)) Tr(𝜌1(𝑥

(𝑖))𝑂)− Tr(𝜌𝜔𝑂). (F35)

By making use of the trigonometric expansion of 𝜌Λ and the explicit formalism of �̂�𝑛(𝑥), the estimation error can be
reformulated as

E𝑥∼[−𝜋,𝜋]𝑑
[︁
|Tr(𝑂�̂�𝑛(𝑥))− Tr(𝑂𝜌Λ(𝑥))|2

]︁
(F36a)

= E𝑥∼[−𝜋,𝜋]𝑑

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒ 1𝑛

𝑛∑︁
𝑖=1

𝜅Λ(𝑥,𝑥
(𝑖)) Tr(𝜌1(𝑥

(𝑖))𝑂)−
∑︁

𝜔,‖𝜔‖≤Λ

Φ𝜔(𝑥) Tr(𝜌𝜔𝑂)

⃒⃒⃒⃒
⃒⃒
2
⎤⎥⎦ (F36b)

= E𝑥∼[−𝜋,𝜋]𝑑

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒ ∑︁
𝜔,‖𝜔‖≤Λ

Φ𝜔(𝑥)

(︃
1

𝑛

𝑛∑︁
𝑖=1

2‖𝜔‖0Φ𝜔(𝑥
(𝑖)) Tr(𝜌1(𝑥

(𝑖))𝑂)− Tr(𝜌𝜔𝑂)

)︃⃒⃒⃒⃒
⃒⃒
2
⎤⎥⎦ (F36c)

= E𝑥∼[−𝜋,𝜋]𝑑

⎡⎣ ∑︁
𝜔,‖𝜔‖≤Λ

∑︁
𝜔′,‖𝜔′‖≤Λ

Φ𝜔(𝑥)Φ𝜔′(𝑥)𝐴𝜔𝐴𝜔′

⎤⎦ (F36d)

=
∑︁

𝜔,‖𝜔‖≤Λ

∑︁
𝜔′,‖𝜔′‖≤Λ

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥)Φ𝜔′(𝑥)d𝑑𝑥𝐴𝜔𝐴𝜔′ (F36e)

=
∑︁

𝜔,‖𝜔‖≤Λ

2−‖𝜔‖0𝐴2
𝜔 (F36f)
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=
∑︁

𝜔,‖𝜔‖≤Λ

2−‖𝜔‖0

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

2‖𝜔‖0Φ𝜔(𝑥
(𝑖)) Tr(𝜌1(𝑥

(𝑖))𝑂)− Tr(𝜌𝜔𝑂)

⃒⃒⃒⃒
⃒
2

(F36g)

≡
∑︁

𝜔,‖𝜔‖≤Λ

|�̃�𝜔(𝒯 )|2, (F36h)

where Eq. (F36d) adopts the explicit form of the trigonometric monomial kernel 𝜅Λ, Eq. (F36d) employs the definition

𝐴𝜔 in Eq. (F35), and Eq. (F36f) comes from the evaluation of the orthogonality of basis functions in Eq. (F13).
Such reformulation suggests that the derivation of the upper bound of E𝑥∼[−𝜋,𝜋]𝑑 [|Tr(𝑂�̂�𝑛(𝑥)) − Tr(𝑂𝜌(𝑥))|2] is

reduced to deriving the upper bound of �̃�𝜔(𝒯 ) for ∀𝜔 ∈ C(Λ). To do so, we rewrite the term Tr(𝜌𝜔𝑂) in �̃�𝜔(𝒯 ) as
the trigonometric monomial expansion of 𝜌(𝑥), i.e.,

Tr(𝜌𝜔𝑂) = 2‖𝜔‖0
1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥) Tr(𝜌(𝑥)𝑂)d𝑑𝑥 (F37a)

= 2‖𝜔‖0E𝑥∼[−𝜋,𝜋]𝑑Φ𝜔(𝑥) Tr(𝜌(𝑥)𝑂) (F37b)

= 2‖𝜔‖0E𝑥∼[−𝜋,𝜋]𝑑Φ𝜔(𝑥)E𝑠𝑥1 ,...,𝑠𝑥𝑁 Tr(𝜌1(𝑥)𝑂). (F37c)

Accordingly, the quantity |�̃�𝜔(𝒯 )|2 yields

|�̃�𝜔(𝒯 )|2 =

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

Φ𝜔(𝑥
(𝑖)) Tr(𝜌1(𝑥

(𝑖))𝑂)− E𝑥∼[−𝜋,𝜋]𝑑Φ𝜔(𝑥)E𝑠𝑥1 ,...,𝑠𝑥𝑁 Tr(𝜌1(𝑥)𝑂)

⃒⃒⃒⃒
⃒
2

. (F38)

This formalism hints that we can use Hoeffding’s inequality to bound �̃�𝜔(𝒯 ). Recall that the requirement of applying
Hoeffding’s inequality is ensuring the expectation value is bounded. In our case, we have

|Φ𝜔(𝑥) Tr(𝜌1(𝑥)𝑂)| ≤ |Tr(𝜌1(𝑥)𝑂)| (F39a)

≤ ‖𝑂‖∞‖𝜌1(𝑥)‖1 (F39b)

= 3𝐾𝐵, (F39c)

where the first inequality uses the Cauchy–Schwarz inequality and |Φ𝜔(𝑥)| ≤ 1, the second inequality adopts the von
Neumann’s trace inequality with Hölder’s inequality, and the last inequality exploits ‖𝜌1(𝑥)‖1 ≤ 3𝐾 [79, Eq. (F37)]
and the condition ‖𝑂‖∞ ≤ 𝐵.

The bounded expectation term enables us to use Hoeffding’s inequality to attain the following result, i.e.,

Pr
[︁
�̃�𝜔(𝒯 )2 ≥ 𝜏2

]︁
= Pr

[︁
�̃�𝜔(𝒯 ) ≥ 𝜏

]︁
≤ 2 exp

(︂
− 2𝑛𝜏2

𝐵29𝐾

)︂
. (F40)

Denote the set of truncated frequencies as C(Λ) = {𝜔|𝜔 ∈ {0,±1}𝑑, 𝑠.𝑡. ‖𝜔‖0 ≤ Λ}. This leads to

Pr

⎡⎣ ∑︁
𝜔∈C(Λ)

|𝐷𝜔(𝒯 )|2 ≥ |C(Λ)|𝜏2
⎤⎦ ≤

∑︁
𝜔∈C(Λ)

Pr
[︀
|𝐷𝜔(𝒯 )|2 ≥ 𝜏2

]︀
≤ |C(Λ)| · 2 exp

(︂
− 2𝑛𝜏2

𝐵29𝐾

)︂
. (F41)

Let the right hand side be 𝛿. We have

𝜏 =

√︃
1

2𝑛
𝐵29𝐾 log

(︂
2 · |C(Λ)|

𝛿

)︂
. (F42)

This concludes the proof as with probability at least 1 − 𝛿, the mean-square error between the prediction and the
ground truth taken over the randomness of the sampled inputs and classical shadow is upper bounded by

E𝑥∼[−𝜋,𝜋]𝑑

[︂⃒⃒⃒
Tr(𝑂𝜎(1)

𝑛 (𝑥))− Tr(𝑂𝜌(𝑥))
⃒⃒⃒2]︂

≤ |C(Λ)| 1
2𝑛
𝐵29𝐾 log

(︂
2 · |C(Λ)|

𝛿

)︂
. (F43)
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SM G: Computational time for training and prediction

Here we analyze the computational cost of the proposed ML model. For clarity, here we separately analyze the
computational time of our proposal required in the training and inference.
Training time. Recall that the training procedure of our model amounts to loading the collected training dataset

𝒯s = {𝑥(𝑖), 𝜌𝑇 (𝑥
(𝑖))}𝑛𝑖=1 to the classical memory. According to the explanation of classical shadow in SM A1, the

required computation cost to store and load the 𝑁 -qubit state 𝜌𝑇 (𝑥
(𝑖)) with 𝑇 snapshots is 𝒪(𝑁𝑇 ). Simultaneously,

the computation cost to store and load the classical control 𝑥(𝑖) is 𝒪(𝑑). Combining these facts with the result of
Theorem 2 such that the required total number of training examples 𝑛 of our model, the computation cost to load
the dataset 𝒯s is

𝒪(𝑛𝑁𝑇 ) = 𝒪
(︂
𝑁𝑇 |C(Λ)|𝐵

29𝐾

𝜖
log

(︂
2 · |C(Λ)|

𝛿

)︂)︂
= ̃︀𝒪(︂𝐵29𝐾𝑁𝑇 |C(4𝐶/𝜖)|

𝜖

)︂
. (G1)

As discussed in the main text, when 𝐶 is bounded (i.e., 𝐶 ∼ 𝒪(1/poly(𝑁)) or 𝐶 ∼ 𝒪(1/exp(𝑁))) or 𝑑 is a small
constant in many practical scenarios, the cardinality |C(4𝐶/𝜖)| polynomially scales with 𝑁 and 𝑑, and thus training
our model is computationally efficient.

Inference (prediction) time. Suppose that the observable 𝑂 is constituted by multiple local observables with a bounded

norm, i.e., 𝑂 =
∑︀𝑞
𝑖=1𝑂𝑖 and

∑︀
𝑙 ‖𝑂𝑖‖ ≤ 𝐵, and the maximum locality of {𝑂𝑖} is 𝐾. Following the definition of our

model in Eq. (F1), given a new input 𝑥 and the observable 𝑂, the prediction yields

ℎs ≡ Tr(𝑂�̂�𝑛(𝑥)) =
1

𝑛

𝑛∑︁
𝑖=1

𝜅Λ

(︁
𝑥,𝑥(𝑖)

)︁
Tr
(︁
𝑂𝜌𝑇 (𝑥

(𝑖))
)︁
. (G2)

In this regard, the evaluation involves summing over the assessment of each training example (𝑥(𝑖), 𝜌𝑇 (𝑥
(𝑖))) for

∀𝑖 ∈ [𝑛], and the evaluation of each training example can be further decomposed into two components. That is, the
first component is classically computing the shadow estimation Tr(𝑂𝜌𝑇 (𝑥

(𝑖))); the second component is calculating
the kernel function 𝜅Λ(𝑥,𝑥

(𝑖)) for ∀𝑖 ∈ [𝑛]. According to the runtime complexity of shadow estimation elucidated in
SM A1, when 𝐾 ∼ 𝒪(1), the computation of each Tr(𝑂𝑖𝜌𝑇 (𝑥

(𝑖))) can be completed in 𝒪(𝑇 ) time after storing the
classical shadow in the classical memory. In this regard, the computation cost to complete the first part is

𝒪(𝑇𝑞). (G3)

Moreover, based on the explicit definition of the kernel 𝜅Λ(·, ·), the computation cost of evaluating 𝜅Λ(𝑥,𝑥
(𝑖)) is

𝒪(|C(4𝐶/𝜖)|). (G4)

In conjunction with the computation cost of each example and the total number of training examples 𝑛, the required
predicting time of our proposal is

𝒪(𝑛(𝑇𝑞 + |C(4𝐶/𝜖)|)) ≤ ̃︀𝒪(︂𝑇𝑞𝐵29𝐾 |C(4𝐶/𝜖)|2
𝜖

)︂
. (G5)

In conclusion, when 𝐶 is bounded, the whole procedure of our proposal (encompassing the training and predicting)
is both computational and memory efficient, which is upper bounded by

̃︀𝒪(︂𝑇𝑁𝑞𝐵29𝐾 |C(4𝐶/𝜖)|2
𝜖

)︂
. (G6)

SM H: Classical prediction model with the full expansion (Proof of Corollary 1)

This section comprises two parts. In SM H1, we elaborate on the implementation details of the protocol introduced
in Corollary 1. Then, in SM H2, we present the proof details of Corollary 1.
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Figure H.6: Purely classical learning model with the full expansion. The pipeline is similar to the one presented in
Fig. 1 of the main text. The only difference is the way of collecting training data, where the circuit layout is known by the
learner and the expectation value Tr(𝜌(𝑏𝑥)𝑂) should be efficiently calculated by the employed classical simulators.

1. Implementation of the classical prediction model

The implementation of the protocol introduced in Corollary 1 is visualized in Fig. H.6. The only difference with the
one introduced in the main text is the way of collecting training data. Specifically, when the tunable quantum circuit
architecture formed by RZ+CI is known to the learner, the classical simulators (e.g., tensor network simulators,
LOWESA, and near Clifford circuits simulators) are employed to collect the training data

𝒯c =
{︁
𝑥(𝑖) → Tr

(︁
𝜌(𝑥(𝑖))𝑂

)︁}︁𝑛
𝑖=1

. (H1)

Once the training dataset is prepared, the learner uses it to form the kernel-based prediction model, i.e., given a
new input 𝑥 and an observable 𝑂, it takes the form as

ℎc(𝑥, 𝑂) =
1

𝑛

𝑛∑︁
𝑖=1

𝜅
(︁
𝑥,𝑥(𝑖)

)︁
Tr(𝜌(𝑥(𝑖))𝑂) with 𝜅(𝑥,𝑥(𝑖)) =

∑︁
𝜔,‖𝜔‖0≤𝑑

2‖𝜔‖0Φ𝜔(𝑥)Φ𝜔(𝑥
(𝑖)) ∈ R. (H2)

Note that this protocol is relatively more restrictive than the one introduced in the main text, as the dimension 𝑑 is
required to be sufficiently low with the full expansion and the expectation value under the observable 𝑂 should be
efficiently calculated by the exploited classical simulators.

2. Proof of Corollary 1

The formal statement of Corollary 1 is as follows.

Corollary (Restatement of Corollary 1). Following notations in the main text, consider a parametrized family of
𝑁 -qubit states 𝒬 and ‖𝑂‖∞ ≤ 𝐵 Then, let the dataset be 𝒯c = {𝑥(𝑖) → Tr(𝜌(𝑥(𝑖))𝑂)}𝑛𝑖=1 with 𝑥(𝑖) ∼ Unif[−𝜋, 𝜋]𝑑 and

𝑛 = 3𝑑𝐵2 log
(︁

2·3𝑑
𝛿

)︁
(2𝜖)−1. Then with probability at least 1 − 𝛿, the average prediction error of the prediction model

in Eq. (H2) satisfies

E𝑥∼[−𝜋,𝜋]𝑑 |ℎc(𝑥, 𝑂)− Tr(𝑂𝜌(𝑥))|2 ≤ 𝜖. (H3)

Proof of Corollary 1. Since the full expansion is adopted, the truncation error is eliminated. We only need to quantify
the estimation error induced by the finite training examples. The discrepancy can be reformulated as

E𝑥∼[−𝜋,𝜋]𝑑
[︁
|ℎc(𝑥, 𝑂)− Tr(𝑂𝜌(𝑥))|2

]︁
(H4a)

= E𝑥∼[−𝜋,𝜋]𝑑

⎡⎣⃒⃒⃒⃒⃒∑︁
𝜔

Φ𝜔(𝑥)

(︃
1

𝑛

𝑛∑︁
𝑖=1

2‖𝜔‖0Φ𝜔(𝑥
(𝑖)) Tr(𝜌(𝑥(𝑖))𝑂)− Tr(𝜌𝜔𝑂)

)︃⃒⃒⃒⃒
⃒
2
⎤⎦ (H4b)

= E𝑥∼[−𝜋,𝜋]𝑑

[︃∑︁
𝜔

∑︁
𝜔′

Φ𝜔(𝑥)Φ𝜔′(𝑥)𝐴𝜔𝐴𝜔′

]︃
(H4c)
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=
∑︁
𝜔

∑︁
𝜔′

1

(2𝜋)𝑑

∫︁
[−𝜋,𝜋]𝑑

Φ𝜔(𝑥)Φ𝜔′(𝑥)d𝑑𝑥𝐴𝜔𝐴𝜔′ (H4d)

=
∑︁
𝜔

2−‖𝜔‖0Φ𝜔(𝑥)𝐴
2
𝜔 (H4e)

=
∑︁
𝜔

2−‖𝜔‖0

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

2‖𝜔‖0Φ𝜔(𝑥
(𝑖)) Tr(𝜌(𝑥(𝑖))𝑂)− Tr(𝜌𝜔𝑂)

⃒⃒⃒⃒
⃒
2

(H4f)

≡
∑︁
𝜔

|𝐷𝜔(𝒯 )|2, (H4g)

where Eq. (H4f) comes from the evaluation of the orthogonality of basis functions in Eq. (F13). Recall the analysis
in the proof of Theorem 1, the quantity |𝐷𝜔(𝒯 )|2 yields

|𝐷𝜔(𝒯 )|2 =

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

Φ𝜔(𝑥
(𝑖)) Tr

(︁
𝜌(𝑥(𝑖))𝑂

)︁
− E𝑥∼[−𝜋,𝜋]𝑑Φ𝜔(𝑥) Tr(𝜌(𝑥)𝑂)

⃒⃒⃒⃒
⃒
2

. (H5)

This formalism hints that we can use Hoeffding’s inequality to bound 𝐷𝜔(𝒯 ). In this case, we have

|Φ𝜔(𝑥) Tr(𝜌(𝑥)𝑂)| ≤ |Tr(𝜌(𝑥)𝑂)| ≤ ‖𝑂‖∞‖𝜌(𝑥)‖1 = 𝐵, (H6)

where the first inequality uses the Cauchy–Schwarz inequality and |Φ𝜔(𝑥)| ≤ 1, the second inequality adopts von
Neumann’s trace inequality with Hölder’s inequality, and the last inequality exploits ‖𝜌(𝑥)‖1 = 1 and ‖𝑂‖∞ ≤ 𝐵.
The bounded expectation term enables us to use Hoeffding’s inequality to attain the following result, i.e.,

Pr[𝐷𝜔(𝒯 )2 ≥ 𝜏2] = Pr[𝐷𝜔(𝒯 ) ≥ 𝜏 ] ≤ 2 exp

(︂
−2𝑛𝜏2

𝐵2

)︂
. (H7)

This leads to

Pr

⎡⎣ ∑︁
𝜔∈C(𝑑)

|𝐷𝜔(𝒯 )|2 ≥ |C(𝑑)|𝜏2
⎤⎦ ≤

∑︁
𝜔∈C(𝑑)

Pr
[︀
|𝐷𝜔(𝒯 )|2 ≥ 𝜏2

]︀
≤ 3𝑑 · 2 exp

(︂
−2𝑛𝜏2

𝐵2

)︂
. (H8)

Let the right hand side be 𝛿. We have

𝜏 =

√︃
1

2𝑛
𝐵2 log

(︂
2 · 3𝑑
𝛿

)︂
. (H9)

This concludes the proof as with probability at least 1 − 𝛿, the mean-square error between the prediction and the
ground truth taken over the randomness of sampled inputs and classical shadow is upper bounded by

E𝑥∼[−𝜋,𝜋]𝑑

[︂⃒⃒⃒
Tr(𝑂�̂�(c)

𝑛 (𝑥))− Tr(𝑂𝜌(𝑥))
⃒⃒⃒2]︂

≤ 3𝑑
1

2𝑛
𝐵2 log

(︂
2 · 3𝑑
𝛿

)︂
. (H10)

Let the right-hand side be equal to the tolerant error 𝜖. We have

𝑛 =
3𝑑𝐵2 log

(︁
2·3𝑑
𝛿

)︁
2𝜖

. (H11)

SM I: Learning bounded-gate quantum circuit with CI gates and parameterized multi-qubit gates

In the main text, we primarily elaborate on the application of the proposed ML model in predicting bounded-gate
quantum circuits consisting of RZ and CI gates. However, our proposal is adaptable and can be readily extended to
predict bounded-gate quantum circuits composed of alternative basis gate sets. To exemplify this flexibility, in this
section, we illustrate how our proposal and the associated theoretical findings (Theorem 2) can be effectively expanded
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to encompass a wider context, specifically bounded-gate circuits incorporating CI gates alongside parameterized multi-
qubit gates generated by arbitrary Pauli strings.

For ease of notations, given an 𝑁 -qubit quantum circuit, we define the 𝑗-th parameterized gate generated by the
Pauli string 𝑃𝑎𝑗 ∈ {I, 𝑋, 𝑌, 𝑍}𝑁 with 𝑎𝑗 ∈ {0, 1, 2, 3}𝑁 as

RP(𝑥𝑗) = exp
(︁
−𝚤𝑥𝑗

2
𝑃
)︁
≡ cos

(︁𝑥𝑗
2

)︁
I2𝑁 + 𝚤 sin

(︁𝑥𝑗
2

)︁
𝑃. (I1)

Then the bounded-gate quantum circuit takes the form as

𝑈(𝑥) =

𝑑∏︁
𝑗=1

(RP𝑎𝑗
(𝑥𝑗)𝑢𝑒), (I2)

where 𝑢𝑒 ∈ CI refers to an arbitrary Clifford gate or their combinations. In what follows, we demonstrate how
the proposed ML model effectively predicts the incoherent dynamics of bounded-gate circuits in Eq. (I1), with the
resulting prediction error aligning with the findings outlined in Theorem 2.

Recall the implementation of the proposed ML model and the proof of Theorem 2 presented in SM F. In brief, if
the pre-measured state under the Pauli-basis expansion can be expressed as the form

𝜌(𝑥) = 𝑈(𝑥)(|0⟩ ⟨0|)⊗𝑁𝑈(𝑥)† =
∑︁
𝜔

Φ𝜔(𝑥)⟨⟨0|U†
𝜔 ≡

∑︁
𝜔

Φ𝜔(𝑥)𝜌𝜔, (I3)

where the trigonometric monomial basis is Φ𝜔(𝑥) =
∏︀𝑑
𝑖=1

⎧⎪⎨⎪⎩
1 if 𝜔𝑖 = 0

cos(𝑥𝑖) if 𝜔𝑖 = 1

sin(𝑥𝑖) if 𝜔𝑖 = −1

, then we can form the state prediction

model in Eq. (F1), i.e.,

�̂�𝑛(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝜅
(︁
𝑥,𝑥(𝑖)

)︁
𝜌𝑇 (𝑥

(𝑖)), with 𝜅(𝑥,𝑥(𝑖)) =
∑︁

𝑘∈Z𝑑,‖𝑘‖2≤Λ

cos
(︁
𝜋𝑘 ·

(︁
𝑥− 𝑥(𝑖)

)︁)︁
∈ R, (I4)

and the analysis in Theorem 2 applies. In this respect, the key aspect of extending our proposal from {RZ+CI} gate
set to {RP𝑎𝑗

+CI} gate set involves demonstrating that each parameterized gate RP𝑎𝑗
with 𝑗 ∈ [𝑑] can be represented

in the form specified by Eq. (A10), i.e.,

RP𝑎𝑗
(𝑥𝑗) = 𝐷′

0 + cos(𝑥𝑗)𝐷
′
1 + sin(𝑥𝑗)𝐷

′
2, (I5)

where 𝐷′
0, 𝐷

′
1, and 𝐷

′
2 are three constant matrices with the size 2𝑁 × 2𝑁 .

We next prove that the form in Eq. (I5) is satisfied for any Pauli string 𝑃𝑎𝑗
. For clarity, in the following analysis,

we denote 𝑃𝑎𝑗
and RP𝑎𝑗

(𝑥𝑗) as 𝑃𝑗 and RP𝑗(𝑥), respectively. According to the definition of PTM, we have

[RP𝑎𝑗
(𝑥𝑗)]𝑖𝑘 = Tr (RP𝑗(𝑥)𝑃𝑖RP𝑗(−𝑥)𝑃𝑘) . (I6)

Since 𝑃𝑖, 𝑃𝑗 , and 𝑃𝑘 are Pauli strings, any two of them must commute or anti-commute to each other. By exploiting
this property, we next separately analyze the value of [RP𝑎𝑗

(𝑥𝑗)]𝑖𝑘 for ∀𝑖, 𝑘 ∈ [4𝑑].

Case I: [𝑃𝑖, 𝑃𝑗 ] = 0 or [𝑃𝑘, 𝑃𝑗 ] = 0. In this case, Eq. (I6) can be simplified to

[RP𝑎𝑗
(𝑥𝑗)]𝑖𝑘 = Tr(𝑃𝑖𝑃𝑘) = 𝛿𝑖𝑗 . (I7)

In other words, for the indices 𝑖, 𝑘 ∈ [4𝑑] whose corresponding Pauli strings commute with 𝑃𝑗 , the corresponding PTM
entry is a constant, which is zero if 𝑖 ̸= 𝑘 and 1 if 𝑖 = 𝑘. According to the formula in Eq. (I5), the relevant entries,
whose indices satisfy [𝑃𝑖, 𝑃𝑗 ] = 0 or [𝑃𝑘, 𝑃𝑗 ] = 0, belong to 𝐷′

0.

Case II: {𝑃𝑖, 𝑃𝑗} = 0 or {𝑃𝑘, 𝑃𝑗} = 0. In this case, Eq. (I6) can be simplified to

[RP𝑎𝑗
(𝑥𝑗)]𝑖𝑘 = Tr(RP𝑗(2𝑥)𝑃𝑖𝑃𝑘) = cos(𝑥) Tr(𝑃𝑖𝑃𝑘) + 𝚤 sin(𝑥) Tr(𝑃𝑗𝑃𝑖𝑃𝑘) = cos(𝑥)𝛿𝑖𝑗 + 𝚤 sin(𝑥) Tr(𝑃𝑗𝑃𝑖𝑃𝑘), (I8)

where the second equality employs RP𝑗(2𝑥) = cos(𝑥)I2𝑁 + 𝚤 sin(𝑥)𝑃𝑗 . In other words, for the indices 𝑖, 𝑘 ∈ [4𝑑] whose
corresponding Pauli strings anticommute with 𝑃𝑗 , (i) when 𝑖 = 𝑘, the corresponding PTM entry only contributes to
𝐷′

1 in Eq. (I5); (ii) when 𝑖 ̸= 𝑘 and 𝑃𝑗𝑃𝑖𝑃𝑘 = I2𝑁 , the corresponding PTM entry only contributes to 𝐷′
2 in Eq. (I5);

(iii) else, the corresponding PTM entry is zero, which only contributes to 𝐷′
0.

Taken together, for any pair indices (𝑖, 𝑘), the corresponding entry only contributes to one of 𝐷′
0, 𝐷

′
1, and 𝐷′

2,
indicating the relation in Eq. (I5). As a result, our proposal and Theorem 2 applies to the basis gate set {RP𝑎𝑗

,CI}.
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SM J: More numerical simulations

In this section, we demonstrate more simulation details omitted in the main text. Specifically, in SM J1, we provide
more simulation details about predicting properties of rotational 𝑁 -qubit GHZ states. Then, in SM J 2, we illustrate
more simulation results about the global Hamiltonian simulation task. Last, in SM J 3, we demonstrate how to use
the proposed ML model to enhance variational quantum algorithms, including variational quantum Eigen-solver and
quantum neural networks.

1. Numerical simulations of 𝑁-qubit rotational GHZ states

Dataset construction of 𝑁-qubit rotational GHZ states. The mathematical form of the 𝑁 -qubit rotational
GHZ states is

|GHZ(𝑥)⟩ =
(︀
RY1(𝑥1)⊗ RY𝑁/2(𝑥2)⊗ RY𝑁 (𝑥3)

)︀ |0 · · · 0⟩+ |1 · · · 1⟩√
2

. (J1)

The circuit implementation of this class of quantum states is visualized in Fig. J.7(a).

|0i1

GHZ

RY (x1)

|0i2

|0iN/2 RY (x2)

|0iN�1

|0iN RY (x3)

(a) (b)
Rotational N-qubit GHZ states

Figure J.7: More simulation results of rotational N-qubit GHZ states. (a) Circuit implementation of the ro-
tational 𝑁-qubit GHZ states. The three RY gates apply to the first qubit, the (𝑁/2)-th qubit, and the last qubit. (b)
Prediction error. The root mean squared (RMS) error of the trained ML model with varied truncation Λ, the shot number
𝑇 , and the qubit count 𝑁 .

In both subtasks presented in the main text, the classical shadow of each example (𝑥(𝑖), 𝜌𝑇 (𝑥
(𝑖))) in the training

dataset 𝒯 are acquired by PastaQ library [113]. In the first subtask of two-point correlation estimation, the exact
value is obtained by matrix product operators (MPO) provided by PastaQ [113]. In the second subtask of predicting
expectation values on 𝑍1 ⊗ 𝑍𝑁 , the accurate results yield

⟨GHZ(𝑥)|𝑍1 ⊗ 𝑍𝑁 |GHZ(𝑥)⟩
= − sin(𝑥1) sin(𝑥2) cos(𝑥3)− cos(𝑥1) sin(𝑥2) sin(𝑥3) + sin(𝑥1) cos(𝑥2) sin(𝑥3) + cos(𝑥1) cos(𝑥2) cos(𝑥3). (J2)

Hyper-parameter settings. The random seed to collect training examples and test examples is set as 1234 and
123, respectively. The hyper-parameter of MPO used to calculate the exact values of the two-point correlation of
rotational GHZ states is as follows. The cutoff value is set as 10−8 and the max dimension is set as 50.

Cardinality of the frequency set C(Λ). In the main text, we adopt three settings of the maximum frequency
length, i.e., Λ = 1, 2, 3, to evaluate the performance of the proposed ML model. The corresponding cardinality of the
frequency set is |C(Λ = 1)| = 7, |C(Λ = 2)| = 19, and |C(Λ = 3)| = 27, respectively. The similar performance between
Λ = 2 and Λ = 3 (full expansion) in Fig. 2 indicates that truncating the high-frequency terms does not apparently
affect the capability of the proposed ML model.

Prediction error versus varied number of qubits 𝑁 . We append more simulation results about how the
prediction error of the proposed ML model depends on the shot number 𝑇 , the truncation Λ, and the qubit count
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𝑁 . To be specific, we fix the number of training examples to be 𝑛 = 500 and collect these training examples under
different qubit counts 𝑁 , where the maximum shot number is set as 𝑇 = 150. Fig. J.7(b) visualizes the root mean
squared (RMS) prediction error under different settings on 10 test examples. The achieved results indicate that the
performance of the proposed ML model is dominated by the truncation number Λ (i.e., the dimension of classical
controls 𝑑) and not sensitive to the number of qubits, which echoes our theoretical analysis. More precisely, when
Λ ≥ 2 and 𝑇 ≥ 100, the prediction error attains a very low value for both 𝑁 = 10, 30, 60.

2. More details of synthetic global Hamiltonian simulation

Hyper-parameter settings. In the main text, we adopt three settings of the maximum frequency length, i.e.,
Λ = 1, 2, 3, 4, to evaluate the performance of the proposed ML model. The corresponding cardinality of the frequency
set is |C(Λ = 1)| = 61, C|(Λ = 2)| = 1801, |C(Λ = 3)| = 472761, and respectively. When evaluating the statistical
performance of the proposed ML model with 𝑛 < 50000, we sample a subset from the whole dataset using different
random seeds. The random seeds for all relevant simulations are set as 12345, 22222, 33333, 44444, and 55555,
respectively.

Standard error for the simulation results in Fig. 3(b). For ease of visualization, Fig. 3(b) only demonstrates
the averaged RMS prediction error of our model. For completeness, here we append the corresponding standard error
in Table I. Particularly, for all settings with Λ ∈ {1, 2, 3, 4}, the averaged RMS prediction error and the corresponding
standard error continuously decrease with the increased number of training examples.

Table I: Simulation results of predicting the magnetization of states evolved by the 60-qubit global Hamiltonian.

𝑛 = 100 𝑛 = 250 𝑛 = 500 𝑛 = 750 𝑛 = 1000
Λ = 1 0.0424 ± 0.0222 0.0210 ± 0.0126 0.0130 ± 0.0109 0.0152 ± 0.0117 0.0143 ± 0.0088
Λ = 2 0.1556 ± 0.0959 0.1862 ± 0.0933 0.0729 ± 0.0472 0.0729 ± 0.0472 0.037 ± 0.0293
Λ = 3 0.3244 ± 0.3473 0.3736 ± 0.3249 0.4012 ± 0.2055 0.3502 ± 0.1357 0.2631 ± 0.1003
Λ = 4 2.1227 ± 1.061 0.9519 ± 0.7148 0.9678 ± 0.6590 0.7926 ± 0.4887 0.6432 ± 0.5222

The role of shot number 𝑇 . Here we conduct numerical simulations to explore how the shot number 𝑇 influences
the prediction error. Specifically, we fix the number of training examples as 𝑛 = 500 and the truncation value as Λ = 1,
but vary the shot number from 𝑇 = 50 to 𝑇 = 00. Each setting is repeated five times to collect the statistical results,
where the randomness stems from distilling different training datasets from 600 training examples. The simulation
results are summarized in Table. II, where the averaged prediction error does not decrease with the increased number
of measurements. This phenomenon echoes our theoretical analysis, suggesting that once the shot number exceeds a
certain threshold, it does not heavily affect the performance of the proposed model.

Table II: Simulation results of predicting the magnetization of states evolved by the 60-qubit global Hamiltonian
with varied shot numbers.

𝑇 = 50 𝑇 = 500
𝑛 = 500 & Λ = 1 0.0130 ± 0.0109 0.0251 ± 0.0038

3. More simulation results on enhanced variational quantum algorithms

As shown in SM A3, a major application of the proposed ML model is enhancing variational quantum algorithms
by substantially reducing the quantum resource demands. In this subsection, we provide a comprehensive explanation
of the corresponding algorithmic implementation and then proceed to numerical simulations that demonstrate the
efficacy of our approach.

Algorithmic implementation. Recall that contemporary quantum devices encounter limitations such as connec-
tivity, gate fidelities, and coherence time. To overcome these constraints, experimentalists typically adopt hardware-
efficient ansatzes (HEAs) constructed from the native gate set from the specified quantum device to implement various
variational quantum algorithms [114, 115]. Essentially, these HEAs are tailored to individual quantum devices, main-
taining consistent gate layouts while adjusting parameters for various computational tasks, as delineated by the
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framework formulated in Eq. (3) of the main text. This intrinsic relation warrants the use of the proposed ML model
to enhance plenty of variational quantum algorithms associated with device-specific HEAs.

The learning framework is summarized in Alg. 1. For a given quantum device and its corresponding HEA, the
learner first constructs the training dataset following the outlined procedure in the main text. Once the dataset is
prepared, the proposed ML model serves as a surrogate to optimize variational quantum algorithms in which the
predictions correspond to the gradient information, obviating the need for direct implementation on the specified
quantum device. Since the optimization process (i.e., the third step) is conducted entirely on classical processors, it

Algorithm 1: Optimizing variational quantum algorithms in an offline manner

1. (Dataset construction) Randomly generate classical controls 𝑥 ∼ [−𝜋, 𝜋]𝑑, feed it to the specified 𝑁 -qubit quantum

device to obtain the pre-measured state 𝑈(𝑥) |0⟩⊗𝑁 , and apply Pauli-based classical shadow with 𝑇 shots to constitute
a single training example (𝑥, 𝜌𝑇 (𝑥));

2. (Dataset construction) Repeat the above procedure 𝑛 times to construct the training dataset 𝒯s ;

3. (Downstream task optimization) Formalize the prediction model ℎs following Eq. (6) and use it to optimize various
downstream tasks without access to the quantum processor.

significantly reduces the overhead associated with accessing sparse quantum devices in the contemporary era.
In what follows, we demonstrate how our approach supports two crucial classes of variational quantum algorithms:

the variational quantum Eigen-solvers (VQEs) and quantum neural networks (QNNs). Note that the learning scheme
presented below can be readily extended to wide applications covered by variational quantum algorithms.

Ground state energy estimation by VQE. Here we first briefly recap the mechanism of VQE when applied to estimate

the ground state energy of a specified Hamiltonian. Given an 𝑁 -qubit Hamiltonian H ∈ C2𝑁×2𝑁 , the ground state
energy estimation aims to find its minimum eigenvalue, i.e.,

E* = min
|𝜓⟩∈C2𝑁

⟨𝜓|H|𝜓⟩ . (J3)

To estimate the ground state energy E*, VQE adopts an ansatz 𝑊 (𝜃) to prepare a variational quantum state

|𝜓(𝜃)⟩ = 𝑊 (𝜃) |𝜓0⟩⊗𝑁 with a fixed input state |𝜓0⟩. The trainable parameters 𝜃 are optimized by minimizing the
loss function ℒ(𝜃,H) = Tr

(︀
(|𝜓0⟩ ⟨𝜓0|)𝑊 (𝜃)†H𝑊 (𝜃)

)︀
. The optimization of VQE follows an iterative manner, i.e., the

classical optimizer continuously leverages the output of the quantum circuits to update 𝜃 and the update rule is

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂
𝜕ℒ(𝜃(𝑡),H)

𝜕𝜃
, (J4)

where 𝜂 refers to the learning rate. The first-order gradient in the equation can be obtained by parameter shift rule
[116]. Mathematically, the derivative with respect to the 𝑘-th parameter 𝑥𝑘 for ∀𝑘 ∈ [𝑑] is

𝜕ℒ(𝜃(𝑡),H)

𝜕𝜃𝑘
=

1

2 sin𝛼

[︁
Tr
(︁
(|𝜓0⟩ ⟨𝜓0|)𝑊 (𝜃(𝑡,+))H𝑊 (𝜃(𝑡,+))†

)︁
− Tr

(︁
(|𝜓0⟩ ⟨𝜓0|)𝑊 (𝜃(𝑡,−))H𝑊 (𝜃(𝑡,−))†

)︁]︁
, (J5)

where 𝜃(𝑡,±) = 𝜃(𝑡) ± 𝛼𝑒𝑘, 𝑒𝑘 is the unit vector along the 𝜃𝑘 axis, and 𝛼 can be any real number but the multiple of
𝜋 because of the diverging denominator.

Supported by the proposed ML model, the optimization of 𝜃 can be entirely carried out on classical processors.
More precisely, define 𝑊 (𝜃) = 𝑈(𝑥) (see Fig. J.8 for the visual interpretation), the two terms of the derivatives in
Eq. (J5) can be predicted by ℎs in Alg. 1 and the optimized parameters can be obtained in an offline manner. For
convenience, in the subsequent context, we dub the VQEs optimized by the proposed ML model as Offline-VQE.
An alternative scenario involves utilizing the optimized parameters of Offline-VQE as effective initial parameters for
running VQEs on real quantum devices. In either case, the offline optimization enabled by the proposed ML model
dramatically reduces the demand for quantum resources, a critical advantage given the scarcity of available quantum
processors in the current landscape.

Binary classification by QNN. Denote the input space as 𝒵, the binary label (class) space as 𝒴 = {0, 1}, and the

training dataset as 𝒟 = {(𝑧(𝑖), 𝑦(𝑖))}𝑛𝑖=1 with samples drawn i.i.d. from an unknown probability distribution D on
𝒵 × 𝒴. The purpose of a binary classification algorithm is using 𝒟 to infer a hypothesis (a.k.a., a binary classifier)
𝑔𝒟 : 𝒵 → R from the hypothesis space to separate training examples from binary classes. This is equivalent to
identifying an optimal hypothesis minimizing the expected risk R(𝑔) = E(𝑧,𝑦)∼D[ℓ(𝑔(𝑧), 𝑦)], where ℓ(·, ·) is the per-
sample loss and for clarity we specify it as the square error [117]. Unfortunately, the inaccessible distribution D forbids
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|0i1 H RZ(x1) RZ(x4)

|0i2 H RZ(x2) RZ(x5)

|0i3 H RZ(x3) RZ(x6)

Pretrain: Circuit 𝑈(𝒙)

|0i1 H RZ(✓1) RZ(✓4)

|0i2 H RZ(✓2) RZ(✓5)

|0i3 H RZ(✓3) RZ(✓6)

Downstream task for VQE: CircuitW(𝜽)

|0i1 H RZ(z1) RZ(✓1)

|0i2 H RZ(z2) RZ(✓2)

|0i3 H RZ(z3) RZ(✓3)

Downstream task for QNN: CircuitW 𝜽 𝑉(𝒛)

Figure J.8: A toy model of optimizing variational quantum algorithms in an offline manner. Left panel: In the
pre-training state, the learner collects training data from a 3-qubit device with a hardware-efficient ansatz (HEA) 𝑈(𝑥), which
contains 𝑑 = 6 tunable parameters. Then the learner can use the collected data to train an ML model introduced in the
main text to enhance various downstream tasks. Middle panel: The optimization of variational quantum Eigen-solvers (VQEs)
associated with the ansatz 𝑊 (𝜃) can be accomplished by the proposed ML model without the access to the quantum resources.
Right panel: The optimization of quantum neural networks (QNNs) associated with the encoding circuit 𝑉 (𝑧) and the trainable
circuit 𝑊 (𝜃) can be accomplished by the proposed ML model without the access to the quantum resources.

us to assess the expected risk directly. In practice, the binary classification algorithm alternatively learns an empirical

classifier ℎ̂ as the global minimizer of the (regularized) loss function

ℒ(𝑔,𝒟) =
1

𝑛

𝑛∑︁
𝑖=1

1

2

(︁
𝑔(𝑧(𝑖))− 𝑦(𝑖)

)︁2
+ E(𝑔), (J6)

where E(𝑔) is an optional regularizer. Given an unseen example 𝑧′, its predicted label is 0 if 𝑔(𝑧′) < 0.5; otherwise,
its predicted label is 1.

When QNN is employed to implement the binary classifier, the hypothesis 𝑔 is realized by variational quantum
circuits followed by a predefined measurement operator Π0 [118, 119]. The mathematical expression of the hypothesis
space for the binary quantum classifier (BiQC) is

𝒢 =
{︁
𝑔(𝑧,𝜃) = Tr

(︀
𝑉 (𝑧)(|0⟩ ⟨0|)⊗𝑁𝑉 (𝑧)†𝑊 (𝜃)†Π0𝑊 (𝜃)

)︀ ⃒⃒⃒
𝜃 ∈ Θ

}︁
, (J7)

where 𝑊 (𝜃) is the trainable circuit and 𝑉 (𝑧) is another variational circuit that encodes the training example 𝑧(𝑖) into
the quantum state 𝜌(𝑧(𝑖)). As with VQE, the optimization of trainable parameters 𝜃 can be completed by the gradient
descent methods (e.g., stochastic gradient descent or batch gradient descent) and the derivatives can be acquired by
the parameter shift rule given in Eq. (J5).

Supported by the proposed ML model, the optimization of 𝜃 for BQC can be entirely carried out on classical
processors. According to Alg. 1, the classical control 𝑥 should be divided into parts, where the first part refers to
the training example 𝑧 and the second part refers to the trainable parameters 𝜃 in BiQCs. In addition, the circuit
architecture of 𝑈(𝑥) amounts to the combination of𝑊 (𝜃) and 𝑉 (𝑧) (see Fig. J.8 for the visual interpretation). In this
way, for an arbitrary input 𝑥 and trainable parameters 𝜃, the derivatives 𝜕ℒ/𝜕𝜃𝑘, which is formed by 𝑔(𝑧,𝜃(𝑡)) and
𝑔(𝑧,𝜃(𝑡,±)), can be estimated by the proposed ML model without accessing quantum resources. Due to this offline
property, we call BiQCs optimized by the proposed ML model as Offline-BiQCs.

Remark. The approach of leveraging the proposed ML model to propel BiQCs can be readily extended to more complex
scenarios. Specifically, the proposed ML model can enhance the optimization of multi-class quantum classifiers [118]
and quantum regression models [120], significantly reducing the quantum resource overhead. Moreover, it can also
improve quantum neural networks with diverse architectures, such as data re-uploading strategy [121] and quantum
convolutional neural networks [122, 123].

Numerical results. To exhibit the effectiveness of our proposal for enhancing VQEs and QNNs, we employ it to
estimate the ground state of the Transverse-field Ising (TFI) Hamiltonian and to classify a synthetic binary dataset,
respectively. For both tasks, we consider the same quantum devices comprising 𝑁 = 3 qubits with a linear qubit
connectivity, and the identical ansatz, i.e.,

𝑈(𝑥) =

3∏︁
𝑙=1

(︃
CNOT2,3 CNOT1,2

3⨂︁
𝑖=1

RY(𝑥𝑖+3(𝑙−1))

)︃
, (J8)

where CNOT𝑎,𝑏 denotes applying CNOT gate to 𝑎-th and 𝑏-th qubits. This ansatz contains in total 𝑑 = 9 classical
controls.
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(b)(a)

Figure J.9: Simulation results for ground state energy estimation of TFI Hamiltonian. (a) The estimated energy
of Offline-VQE under different hyper-parameter settings. The label 𝑛 = 𝑎 refers that the number of training data is
𝑎. The label ‘Exact’ denotes the accurate ground state energy of the employed TFI Hamiltonian. The blue dotted line highlights
the estimated result of traditional VQE with infinite shots. The vertical bar reflects the standard error of Offline-VQE in each
setting. (b) The optimization process of Top-1 Offline-VQE and conventional VQE.

Pre-training. At the stage of dataset construction, we collect in total 90000 training examples and the shot number
of each training example is set as 𝑇 = 1000. The random seed to generate such a dataset is set as 123. Once the data
collection is completed, we form the kernel-based learning model to accomplish the following two downstream tasks
on the classical side.

Downstream task I: ground state energy estimation of TFI model. The mathematical form of the exploited 3-qubit
one-dimensional (1D) TFI Hamiltonian is 𝐻TFI = −0.1(𝑍1𝑍2+𝑍2𝑍3)+0.5(𝑋1+𝑋2+𝑋3). The ground state energy
of 𝐻TFI is E

*
TFI = −1.51Ha.

In numerical simulations, we adopt different hyper-parameter settings to evaluate the performance of Offline-VQE.
In particular, we vary the number of training examples as 𝑛 ∈ {30000, 50000, 70000, 90000} and set the truncation
frequency as Λ ∈ {3, 5, 7, 9}. The maximum iteration is set as 200. The initial parameters are uniformly sampled
from the range [−𝜋, 𝜋]9. Each setting is repeated 5 times to obtain the statistical results. For comprehensive, we
employ the conventional VQE with the same ansatz, the same initial parameters, the same optimizer, and infinite
measurements as the benchmark.

The achieved results are depicted in Fig. J.9. Fig. J.9(a) demonstrates the performance of Offline-VQE under various
settings. A key observation is that with the increased frequency truncation and number of training examples, the
estimated ground state energy of Offline-VQE converges to the exact result. Namely, when Λ ≥ 7 and 𝑛 ≥ 70000, the
estimation error is less than 0.1Ha. Besides, Fig. J.9(b) compares the top-1 Offline-VQE (i.e., Λ = 7 and 𝑛 = 90000)
with conventional VQE. The achieved results exhibit a similar convergence rate during the optimization, where both
of them converge to the near-optimal value after 50 iterations. These results validate the potential of Offline-VQE in
advancing conventional VQEs.

Downstream task II: binary synthetic data classification. The construction rule of the binary synthetic dataset follows

the study [115]. That is, we randomly and uniformly sample classical data 𝑧 in the range [−𝜋, 𝜋]3 and then embed

them into a 3-qubit quantum circuit 𝑉 (𝑧) = CNOT2,3 CNOT1,2

⨂︀3
𝑗=1 RY(𝑧𝑗). Then, we evolve the quantum state

𝑉 (𝑧) |0⟩⊗3
by the unitary𝑊 (𝜃*) =

∏︀2
𝑙=1

(︁
CNOT2,3 CNOT1,2

⨂︀3
𝑗=1 RY(𝜃*

𝑗+3(𝑙−1))
)︁
with the fixed parameters 𝜃* and

measuring the evolved state under the observable 𝑋 ⊗ I4. For the input 𝑧(𝑖), its label is defined as

𝑦(𝑖) = sign
(︁
Tr
(︁
𝑊 (𝜃*)𝑉 (𝑧(𝑖))(|0⟩ ⟨0|)⊗3𝑉 (𝑧(𝑖))†𝑊 (𝜃*)† (𝑋 ⊗ I4)

)︁)︁
, (J9)

where sign(·) denotes the sign function. We collect 500 positive samples and 500 negative samples and split them into
the training set and the test set with a ratio of 0.2.
In numerical simulations, we adopt different hyper-parameter settings to evaluate the performance of Offline-BiQC.

The varied settings are analogous to those employed in the offline-VQE, where the number of training examples is
set as 𝑛 ∈ {30000, 50000, 70000} and the truncation frequency is set as Λ ∈ {3, 5, 7, 9}. The initial parameters are
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Figure J.10: Simulation results of Offline-BiQC. The figure depicts the test accuracy of Offline-BiQC under varied settings.
The label ‘Λ = 𝑎&𝑛 = 𝑏’ denotes that the truncation value is 𝑎 and the number of training examples used to form the classical
representations is 𝑏. The label ‘BiQC’ refers to the conventional BiQC optimized in an online manner.

uniformly sampled from the range [−𝜋, 𝜋]6. The learning rate and the maximum iteration are set as 0.5 and 140,
respectively. For comprehensive, we employ the conventional BiQC with the same encoding and training circuits, the
same initial parameters, the same optimizer, and infinite measurements as the benchmark.

The simulation results are shown in Fig. J.10. When Λ = 3, the test accuracy of Offline-BiQC is lower than 40%
no matter how the number of training examples 𝑛 is. These results reflect the crucial role of the truncation value
in warranting the performance of Offline-BiQC. In addition, Offline-BiQC attains a superior performance with an
increased truncation value. Namely, when Λ ≥ 5 and 𝑛 ≥ 30000, its performance is comparable with conventional
BiQC, where both of them attain a test accuracy above 85%. These results validate the capability of Offline-BiQC
in advancing the study of quantum neural networks by greatly reducing the quantum resources demand. Another
phenomenon is that Offline-BiQC and BiQC encounter the oscillated test accuracy after 80 iterations. This is mainly
caused by the employed large learning rate. Adopting a smaller learning rate, associated with the learning rate decay
strategy, can mitigate this issue.


