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Introduction: Random quantum circuits have played an important role in quantum computation and
quantum information sciences. Their study has allowed researchers to find experiments capable of achieving a
quantum advantage by offering classically-hard to simulate sampling experiments [1–6], providing insights into
quantum chaos [7–9] and entanglement transitions [10–12], as well as improving the study of the trainability
of variational quantum algorithms [13–19]. In particular, random quantum circuits composed of local unitary
gates sampled independently and identically distributed (i.i.d.) according to the Haar measure over the standard
representation of U(4), and acting on neighboring pairs of qubits in a one-dimensional lattice, have received
considerable attention. While several works [20–23] have provided bounds for their spectral gap–the absolute
value of the largest non-one eigenvalue of the t-th moment operator of the random circuit’s unitary distribution–
its exact value has not been reported. In this work we contribute to the body of knowledge of random quantum
circuits by exactly computing the t = 2 spectral gap for unitary circuits in a line (open boundary conditions)
and in a circle (closed boundary conditions), showcasing that the latter is exactly the square root of the former
for all system sizes. Moreover, we also numerically compare such spectral gaps to those obtained from random
circuits with local gates sampled from the orthogonal and symplectic groups.

Framework: Let H = (Cd)⊗n be the Hilbert space of n qudits. In this work we study random circuits U :
H → H in a one-dimensional lattice composed of local gates acting on alternating pairs of nearest neighboring
qudits. As such, the circuit U can be expressed as a product of layers of the form

U =
L∏
l=1

Ul , where Ul = (U l
n,1)

∆U l
2,3U

l
4,5 · · ·U l

n−2,n−1U
l
1,2U

l
3,4 · · ·U l

n−1,n . (1)

Here, Uj,j′ is a local unitary that acts on qudits j and j′, and ∆ = 0 for open boundary conditions (unitaries
acting in a line), while ∆ = 1 for closed boundary conditions (unitaries acting in a circle). We show such a
circuit in Fig. 1. We assume that each Uj,j′ is sampled i.i.d. according to the Haar measure over some local
group Gl

j,j′ . Specifically, we will consider the cases when Gl
j,j′ = U(d2), O(d2) or SP(d2/2). Crucially, it is

known that in the large number of layers limit (i.e., as L → ∞), the distribution of unitaries will converge to
that of some global group G ⊆ U(dn) that is determined by the local groups from which the gates are sampled.

Here, one may ask the question: How fast does the distribution of unitaries EL obtained from a shallow circuit
U converges to the Haar measure over G? To answer this question, one defines the t-th moment operator

A(t)
L = T (t)

G − T (t)
EL , with T (t)

G =

∫
G
dµU⊗t ⊗ (U∗)⊗t , and T (t)

EL =

∫
EL

dUU⊗t ⊗ (U∗)⊗t , (2)

where
∫
G dµ denotes the Haar measure over G, and

∫
EL dU the average over the set of unitaries EL (and the

associated distribution dU) obtained from an L-layered circuit U as in Eq. (1). As such, the matrix A(t)
L

quantifies how much the t-th moment of the distributions differ, and we say that EL forms an ε-approximate
t-design if |A⊗t

L |∞ ⩽ ε. Crucially, given that the moment operator over the Haar measure of a group is a
projector onto its t-th order commutant (i.e., onto the set of operators that commute with U⊗t for any unitary
in the group) [24], then we know that T (t)

G can only have eigenvalues which are equal to one or zero. Moreover,
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it is well known that T (t)
EL must share exactly the same eigenvectors with eigenvalue equal to one as T (t)

G . Hence,
we can study how many layers are needed for the distribution of unitaries to become an ε-approximate t-design
by quantifying the largest non-one eigenvalue, or the spectral gap, of T (t)

EL , which we denote as λ
(n)
max.

Theoretical Results: Our main theoretical result is an exact characterization of the spectral gap for
the t = 2 case when Gl

j,j′ = U(d2) ∀j, j′ in Eq. (1) (the spectral gap for t = 1 can be trivially found to
be zero, indicating that for all L, the circuit forms a 1-design). Clearly, the distribution of unitaries of such
a circuit will converge to the group G = U(dn), for which it is known that T (t)

U(dn) has only two non-zero
eigenvalues [25]. Below we describe our proof technique, which consists of a series of dimensionality reductions
and simplifications.

• We first note that the operator T (2)
EL can be expressed as T (2)

EL =
∏

l T
(2)
El = (T (2)

E )L, where T (2)
E is the

single-layer 2-nd moment operator T (2)
E = (T (2)

n,1 )
∆T (2)

2,3 T
(2)
4,5 · · · T (2)

n−2,n−1T
(2)
1,2 T

(2)
3,4 · · · T (2)

n−1,n, and with the

T (2)
j,j′ being 2-nd moment operators for the local gates in the circuit. Therefore, instead of computing the

eigenvalues of T (2)
EL , we can study those of T (2)

E .

• Next, we use the fact that each T (2)
j,k′ is a projector into the local two-dimensional commutant of U(d2) [25,

26]. Hence, for all qudit dimensions d, one can evaluate the effective action of T (2)
E as a 2n × 2n matrix

where each T (2)
j,j′ is replaced by the 4 × 4 projector A presented below in Eq. (3). That is, we need to

compute the eigenvalues of the 2n × 2n matrix P = L2L1 with L2 = (An,1)
∆A2,3A4,5 · · ·An−2,n−1 and

L1 = A1,2A3,4 · · ·An−1,n, and where Aj,j′ indicates that a 4× 4 projector A acts on the qubits j and j′.

• Since each Aj,j′ is a projector, one can verify that L2 is a projector, indicating that any eigenvector of
P must also be an eigenvector of L2 with eigenvalue one (this follows from the fact that (L2)

kP = P for
all k). Such simplification allows us to note that the eigenvectors of P can only span a 2n/2 dimensional
space. Taking ∆ = 0 (open boundary conditions), we find that an appropriate selection of basis allows
us to express the action of P as the 2n/2 × 2n/2 upper-triangular block matrix P̃ given in Eq. (3).

A =


1 d3−d

d4−1
d3−d
d4−1

0

0 0 0 0
0 0 0 0

0 d3−d
d4−1

d3−d
d4−1

1

 , P̃ =



1 0 · · · · · · · · ·
0 1 · · · · · · · · ·
0 0 B1 · · · · · ·

0 B2 · · ·

0 0 . . .


, B1 =

(
d3 − d

d4 − 1

)2



2 1 0 0 . . . 0
1 2 1 0 . . . 0
0 1 2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 2 1
0 . . . 0 0 1 2


. (3)

• From Eq. (3) we know that the eigenvalues of P̃ are those of each block in the diagonal. First we find two
eigenvalues equal to one (whose associated eigenvectors are verified to be those of T (t)

U(dn)). Next, we show

that the maximum eigenvalue of the k-th block is upper bounded by
(
2(d3−d)
d4−1

)2k
. Then, the B1 sub-

matrix (of size n−2
2 × n−2

2 ) shown in Eq. (3) is Toeplitz and tridiagonal, meaning that an exact formula
for its eigenvalues can be derived. As such, we can prove that the largest eigenvalue of B1 is larger than
any eigenvalue of Bk ∀k ⩾ 2, leading to the analytical expression λ

(n)
max = (d

3−d
d4−1

)2(2 + 2cos(2πn )). In the

large n limit λ
(n)
max −−−→

n→∞
(d

3−d
d4−1

)2 or λ
(n)
max −−−→

n→∞
16
25 = .64 for the qubit d = 2 case.
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Figure 1. a) We study random quantum circuits where local random gates act on alternating pairs of neighboring qudits.
The colored gates are removed (added) with open (closed) boundary conditions. b) We numerically show the spectral gap
versus n for a single layer of circuits composed of local unitary, orthogonal and symplectic gates; as detailed in the main
text. We show, as a dashed curved, the theoretical predictions for the unitary case with open and closed boundaries.

• For the closed boundary conditions, we follow a similar procedure and find that the important sub-matrix
is now pentadiagonal and not Toeplitz. In fact, the form of the matrix ends up being the exact square of

the open boundary case so that λ
(n)
max =

(
d3−d
d4−1

)4
(2 + 2cos(2πn ))2 and λ

(n)
max −−−→

n→∞
256
625 = .4096 if d = 2.

Numerical Results: Here we compare the spectral gap of the unitary case with that of a single layer for
the following cases: (i) All local gates are sampled from the orthogonal group Gl

j,j′ = O(d2) ∀j, j′, so that the
ensuing unitary distribution converges in the large number of layers limit to G = O(dn) for both open and
closed boundary conditions; and (ii) The local gates are sampled from the orthogonal group Gl

j,j′ = O(d2) if
j, j′ are not equal to one, and Gl

j,j′ = SP(d2/2) if j or j′ are equal to one, for in these cases one can prove that
for large L the distribution converges to G = SP(dn/2) [27]. We note that in these two cases we were unable
to analytically compute the spectral gap. However, in our manuscript we propose a technique to numerically
compute these gaps via Density Matrix Renormalization Group (DMRG) for up to n = 70 qubits. The results
of the unitary cases align exactly with the theoretical prediction. Then, calculations show that the spectral gap
of a single layer from the orthogonal group is greater than that of the unitary and even passes the unitary limit
of 16/25 at around 26 qubits. The limit of the orthogonal group, does not seem to be much higher than that
of the unitary as the spectral gap at 70 qubits is around .6460. As for the symplectic group, the spectral gap
seems to be larger than both that of the unitary and orthogonal group for open and closed boundary conditions
(surpassing the unitary limit of 16/25 at n = 24, and being equal to .6461 at n = 70). With open boundaries,
the gap of orthogonal and symplectic appear to converge, whereas with closed there is a notable difference, as
the gap for symplectic unitaries is larger. Finally, we can verify that in the orthogonal and symplectic cases,
the open and closed boundary spectral gaps are not related by a square root as in the unitary case.

Conclusions and Impact: The study of random quantum circuits is central in quantum information and
computation. While there exists several works in the literature which provide bounds to the spectral gaps
of locally random quantum circuits, our work is the first one which—to our knowledge—provides an explicit
formula for λ(n)

max. Our hope is that the tools and techniques developed here can be used as blueprints to either
exactly compute, or better approximate, spectral gaps in other scenarios and for more general groups.
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