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Graph Neural Networks (GNNs) are powerful machine learning models for analyzing structured data repre-
sented as graphs, demonstrating remarkable success in applications like social network analysis and recommen-
dation systems [1]. However, classical GNNs face scalability challenges when dealing with large-scale graphs [2].
This paper proposes frameworks for implementing GNNs on quantum computers to potentially address the
scalability challenges. We devise Quantum GNN architectures mirroring the the structure and functionality
of three fundamental types of classical GNNs [3]: Graph Convolutional Networks (GCNs), Graph Attention
Networks (GATs), and Message-Passing GNNs. Figure 1 and 2 present the overall circuit constructions for the
three Quantum GNN architectures.
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FIG. 1. Overall circuit constructions for our Quantum Graph Convolutional Networks and Quantum Message-Passing
GNNs.

For GCNs, we develop quantum algorithms corresponding to the vanilla Graph Convolutional Networks
(GCNs) [4] and two of its variants - the Simplified Graph Convolution (SGC) [5] and Linear Graph Convolution
(LGC) [6]. A complexity analysis of the quantum SGC demonstrates potential quantum advantages (Table 1).

Algorithm Time Complexity Space Complexitya

Quantum SGC (Min. Depth) Õ(log(1/δ) · (log(NC) + log(Ns))) O(NC + N log N · s log s)

Quantum SGC (Min. Qubits) Õ(log(1/δ) · (NC/ log(NC) + Ns log s)) O(log(NC))

Classical SGC O(|E|C + NC2)) = O(NdC + NC2) O(|E| + NC + C2) = O(Nd + NC + C2)
a space complexity in the quantum case refers to the number of qubits, including the ancilla qubits used by the circuit [7].

TABLE 1. Complexity comparison between quantum and classical SGC [5] for a single forward pass and cost function
evaluation, with K = 2 (where K is the number of layers in the original GCN formulation, though this concept becomes
irrelevant in the context of SGC) and fixed precision parameters. N is the number of nodes, C is the number of features
per node. |E| is the number of edges. d is the average degree of the nodes in the graph. s is the maximum number of
non-zero elements in each row/column of the normalized adjacency matrix. The quantum SGC provides a probabilistic
result with a success probability of 1 − δ.
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When optimizing for minimal circuit depth, the quantum SGC achieves logarithmic time complexity in the
input sizes (albeit at the cost of linear space complexity), providing a substantial speedup over classical SGCs.
When optimizing for minimal qubit usage, the quantum SGC exhibits space complexity logarithmic in the
input sizes, offering an exponential reduction compared to classical SGCs, while still maintaining better time
complexity. The space-time trade-off provides flexibility to adapt to specific quantum hardware constraints and
problem instances. Similar complexity improvements are shown for quantum LGC.

For GATs, we design quantum circuits to evaluate and store the attention scores between each pair of nodes, al-
lowing the incorporation of self-attention mechanisms [8]. Our quantum GAT performs quantum linear algebraic
operations to achieve the graph attention operation, updating each node’s feature from the attention-scores-
weighted features of its neighbors.
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FIG. 2. Overall circuit construction for our Quantum Graph Attention Networks.

For Message-Passing GNNs, we propose a quantum algorithm to load and transform the node features ac-
cording to the message-passing operation [9]. The training of our quantum GNNs can be performed using either
classical or quantum optimization techniques [10].

The proposed quantum GNN architectures offer several advantages:

1. Improved Scalability: The logarithmic space and time complexities of the quantum SGC suggest that
our quantum GNN frameworks can efficiently process large-scale graphs that are intractable for classical
GNNs. This capability is particularly valuable in domains such as social network analysis, where graphs
can reach billions of nodes, making it infeasible to store and process such graphs using classical computing
hardware.

2. Inductive Bias Incorporation: By designing quantum circuits that respect the structure of graph-structured
data, our quantum GNNs align with the principles of Geometric Quantum Machine Learning (GQML)
[11], potentially leading to improvements over problem-agnostic quantum machine learning models.

3. Quantum-Classical Alignment: Our quantum GNN architectures are designed to closely mirror the func-
tionality of classical GNNs, allowing the leverage of classical GNNs’ proven effectiveness while harnessing
quantum computing’s power. This alignment facilitates the translation of insights and techniques from
the well-established field of classical GNNs to the emerging area of quantum GNNs, paving the way for
the development of more advanced architectures.
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In conclusion, this work makes significant contributions to the emerging area of Quantum Graph Neural
Networks by introducing quantum GNN architectures that go beyond generic parameterized quantum circuits,
providing rigorous complexity analysis that demonstrates potential quantum advantages, and laying the foun-
dation for harnessing the power of quantum computing in graph representation learning. These advances not
only expand the theoretical understanding of quantum GNNs but also pave the way for their practical applica-
tions in real-world scenarios where classical GNNs face scalability challenges. As quantum hardware continues
to advance, our quantum GNN frameworks provide promising avenues for developing scalable and efficient
quantum-enhanced graph learning algorithms, opening up new possibilities for analyzing graph-structured data
and tackling previously intractable problems in various domains.

A preprint of this work is available on ArXiv: https://arxiv.org/pdf/2405.17060.
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