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Extended abstract

Convex Regression (CR) is a type of structured regression that strives to fit the best curve f :
Rn → R to a data set D under the constraint of convexity, that is, f(λx + (1 − λ)y) ≤ λf(x) +
(1 − λ)f(y) ∀x, y ∈ Rn, and λ ∈ [0, 1] [5]. CR is of great interest in finance and economics where
convexity constraints appear naturally for value functions. Some remarkable examples include
the Kantorovich problem with quadratic costs [15], the construction of utility functions [2], and
risk analysis [24], among others. Nonetheless, CR has been adopted in more general contexts due
to its relationship with dynamic programming [4], convex optimization [25], and reinforcement
learning [12, 30, 11]. Despite its widespread utility, CR has high computational costs [27] and
often faces stability issues – especially for frameworks relying on Neural Networks (NN) [3, 23]. In
modern approaches the complexities for unconstrained CR is O(n5d2/ε) while for convex Lipschitz
regression it is O(n3d1.5/ε+ n2d2.5/ε+ nd3/ε)[28, 27] which quickly becomes prohibitive for high
dimensional problems or big data.

Quantum computing offers a new paradigm which rapidly advances in hardware and error cor-
rection [7]. Hopes are high for practical utility in machine learning (ML) [1, 13] and beyond [16].
While unconstrained linear regression has been studied in a multitude of ways relying on quantum
[29, 26], this work is the first to explore the problem of quantum convex regression. The main
challenge for proposing Quantum CR (QCR) algorithms is the difficulty of encoding geometrical
constraints, like convexity, directly into the components of the quantum circuits (QC) because
quantum gates are represented as unitary operators on a Hilbert space. Classical NNs may guar-
antee positivity of the network parameters and convexity of the activation functions [3] but there is
no way to impose similar conditions in QCs emulating NNs. Recently, splines were used to model
arbitrary non-linear activation functions as the solutions to linear systems [17, 18, 14]. This enables
to formulate the regression problem as linear systems that can be solved efficiently via Quantum
Linear Solvers thus connecting linear regression with Quantum Variational Circuits. In the long
term, QCR might compete with classical CR and thus find application in robotics, reinforcement
learning [9] or as an alternative to input-convex NNs [3] which are commonly utilized in neural
optimal transport to exploit Brenier’s theorem [8, 19, 20].

Here, we study convex interpolation (as a particular case of convex regression) and apply the
parameterization by [21] to formulate a linear system for convex splines. We devise SWAM, a novel
algorithm to set the boundary conditions of the splines curves, and solve the sparse linear system
using the Variational Quantum Linear Solver (VQLS) [6] whose heuristic time complexity scales
efficiently with ε, n, d, and the matrix condition number κ. Our method theoretically outperforms
classical schemes as long as the underlying quantum states can be prepared efficiently. We expect
that upcoming advances in efficient quantum state preparation will enable general utility of the
proposed technique not only for convex interpolation, but also for convex regression.
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Formulation

We define the single-segment spline problem in R as follows. Given a couple of points, (x0, s0), (x1, s1) ∈
R2, and s′0, s

′
1 ∈ R, we want to find a curve s : [x0, x1] → R, s ∈ C2([x0, x1]), such that s(x0) = x0,

s(x1) = x1, s
′(x0) = s′0, and s′(x1) = s′1. Defining ξ(x) = x−x0

x1−x0
∀ x ∈ [x0, x1] , we parameterize s

as follows:

s(ξ) = λn

(
a

n(n− 1)

(
ξ − 1− γ

2

)n

+
b

n(n− 1)

(
ξ − 1 + γ

2

)n)
+ cξ + d,

where a, b, c, d ∈ R, 0 ≤ γ ≤ 1, n ≥ 4 are parameters that control the shape of the curve. After
taking the first derivative of s, imposing the boundary conditions and performing some algebraic
manipulations, we can write the problem as Aζ = η, where ζ = [a, b, c, d] is the vector of unknowns,
η = [s0, s1, s

′
0, s

′
1], is the vector of parameters of the problem, and A is the following matrix:

A =


α0 β0 0 1
β0 α0 1 1
α1 −β1 1 0
β1 −α1 1 0

 ,

with α0, α0, β0, β1 constants defined in terms of the problem’s parameters. For a multi-segment
problem, instead of finding a single spline interpolating two points, we start with a set of “nodes”
X = {x0, x1, x2, . . . , xN} and a set of “images” S = {s0, s1, s2, . . . , sN} that define N different
single-segment spline problems with sub-domains in [xk, xk+1] for k = 0, 1, . . . , N − 1. We want
to find a function f : [x0, xN ] → R defined as the union of the N solutions of the single-spline
interpolation problems. Additionally, we impose that the images and slopes of adjacent spline
functions coincide when evaluated in the nodes. Because in the context of regression and inter-
polation nodes and their images are given, the problem is then reduced to find a valid set of
slopes {s′0, s′1, s′2, . . . , s′N} such that they allow for the interpolation of the full set of points while
preserving the global property of convexity.

The SWAM method and application of the VQLS

In the context of convex interpolation the set of slopes cannot be arbitrary because it determines
the curvature of f and consequently has a direct impact the function’s convexity. To set those
values properly, we propose a modification to the Slope Averaging Method (SAM) [21]. We choose
the segment’s slopes as a weighted average of adjacent empirical slopes weighted by their relative
distance. We call this method the Slopes Weighted Averaging Method (SWAM). Concretely, let
us define ∆+(k) = xk+1 − xk, ∆−(k) = xk − xk−1, and

ŝ+(k) =

{
sk+1−sk
∆+(k)

if ∆+ > 0

0 if ∆+ = 0
ŝ−(k) =

{
sk−sk−1

∆−(k)
if ∆− > 0

0 if ∆− = 0
,

then, we select the slopes as:
s′0 = (1− σ sign(ŝ+0 )) ŝ

+
0

s′k = ∆+(k) ŝ+(k)+∆−(k) ŝ−(k)
∆−(k)+∆+(k)

, 1 ≤ k ≤ N − 1

s′N = (1 + σ sign(ŝ−N )) ŝ−N

While the SWAM method guarantees convexity whenever possible, a set of points that does
not admit a convex interpolation curve will be interpolated in a non-convex manner by selecting
the empirical slope. Since the problems inside each sub-domain are independent after setting the
corresponding boundary conditions, we define an enlarged linear system Ax = b containing the
information of all segments and boundary conditions. The matrix A is a block diagonal matrix
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where the k-th diagonal element is the Ak matrix for the k-th sub domain; the vector x is the
concatenation of the the vectors of unknowns [ak, bk, ck, dk] for each sub-domain k = 0, 1, . . . , N ;
and the vector b is the concatenation of the vectors of parameters [s0k, s1k, s

′
0k, s

′
1k]. The new

enlarged system is sparse of dimension 4N and possesses significant computational challenges due
to the high complexity of the current available methods O(n5d2/ε) ≈ O(N7). As an attempt to ease
the computational costs by leveraging on Quantum Computing techniques we use the Variational
Quantum Linear Solver (VQLS) [6] to solve the extended linear system.

The goal of the VQLS is solve the linear system Ax = b relying on Variational Quantum Circuits
(VQCs). To implement it we prepare efficiently the quantum state |b⟩ and a circuit encoding the
classical information of A. Then, we find the optimal set of parameters θ such that an ansatz V (θ)
prepares a quantum state |x(θ)⟩ with A |x(θ)⟩ ∝ |b⟩. The circuit V (θ) is trained semi-classically
via Stochastic Gradient Descend (SGD) to minimize the global cost C = 1− | ⟨v|φ(θ)⟩ |2.

Preliminary experiment

Figure 1: Comparison of ICNN, FNN, linear splines, and convex splines for the interpolation task of three
different functions, including a (strictly) convex one (left), a nowhere convex one (center) and one with mixed
convexity domains (right). We observe that our method interpolates the curves in the three scenarios, even
when the function is non-convex thanks to the SWAM algorithm, while preserving global convexity. The
linear interpolation does not preserve convexity due to the lack of added constraints. The FNN approxi-
mates the curves without interpolation or convexity preservation. Finally, despite the fact that the ICNN
guarantees convexity it is prone to return constant lines and does not interpolate the points. Among the
four methods, our algorithm is the only one that interpolates the points while preserving convexity with the
added benefits of its mathematical simplicity and easiness of the quantum implementation.

We apply our method for three different types of functions. A strictly convex function f(x) =
0.4x2 + 0.5x4 − 1.6x6 + 2.5x10, x ∈ [−1, 1], a nowhere convex function f(x) = −(0.4x2 + 0.5x4 −
1.6x6 + 2.5x10) + 1.8, x ∈ [−1, 1], and a function with mixed behaviour f(x) =

(
x
2

)
sin (x) , x ∈

[0, 8]. We compare our convex interpolation method against linear interpolation (LI), a Feedforward
Neural Network (FNN), and an Input Convex Neural Network (ICNN). The results in Figure 1
show that our convex splines method is the only one that succeeds in interpolating the points
while preserving the convexity properties of the subdomains. The generalization of our method
from interpolation to regression is done by giving an extra degree of freedom to the set of images
S, and tuning them to minimize the global MSE of f when evaluated on the dataset D. Note that
the VQLS requires an efficient preparation of the quantum states encoding A, and b which could
be challenging in many scenarios. However, the recent advances in quantum state preparation
[10, 22, 31] and the constant progress in the area will soon enable the efficient preparation of
arbitrary quantum states, making it feasible to apply our method even in those challenging settings.
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