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Optimize model parameters by gradient descent
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3. Model Hamiltonians
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1D Geometrically local model
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1. Abstract
Gibbs states play central roles in understanding the equilibrium properties of quantum many-body systems, and also find applications in 
optimization and machine learning, where they are known as quantum Boltzmann machines (QBMs). The fact that the model Hamiltonian may 
contain non-commuting terms can make QBM more expressive than the classical Boltzmann machine, and in stark contrast to many other 
quantum machine learning models, training the QBM with an appropriate choice of objective function does not suffer from the vanishing 
gradient problem. In this work we numerically investigate the performance of QBMs for different target Gibbs states, model Hamiltonians, 
training parameters, and training strategies, used as a quantum generative model. We have developed a software package that performs the 
QBM training with various combinations of target, model, and parameters using exact diagonalization on classical computers.

• Fig. 1 shows that as the number of 
parameters to be learned increases, 
convergence takes longer.

• Fig. 2 shows that under ideal 
conditions, a high learning rate can 
accelerate convergence, but in the 
presence of noise, a high learning 
rate can actually degrade learning 
performance.

In noisy situations, the learning rate 
should be adjusted according to the 
intensity of noise. This is one evidence 
of the theoretical results in Ref [2].

𝜎: intensity of shot noise
𝜀~𝑁 0,1

Fig. 2. Difference in learning curves due to noise when the Hamiltonian is GL

Fig. 1. Difference in learning curves with Hamiltonian in the absence of noise
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The above result is just one example. With our repository, you can 
perform various experiments and gain knowledge about QBMs!
https://github.com/CQCL/qbm_benchmark_dataset
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