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Entanglement is a key property of quantum computing that separates it from its classical counterpart,
however, its exact role in the performance of quantum algorithms, especially Variational Quantum Algo-
rithms (VQAs), is not well understood. Unlike conventional quantum algorithms, VQAs rely on heuristic
approaches, meaning that even without noise there is no guarantee of these algorithms’ performance. As
such, entanglement is a key metric in evaluating the performance of these algorithms and helps shed light
as to whether these algorithms may be executed successfully on NISQ-era devices.

Tensor Networks have found significant utility over recent years for their ability to simulate slightly en-
tangled quantum systems in a way that is memory-efficient[1]. In addition to this, this simulation method
also provides a way to approximate quantum states by enforcing a limitation in the entanglement of the
state. This provides a way to probe entanglement in quantum algorithms beyond simply measuring the
entanglement entropy throughout the evolution of the state.

In our work[2], we utilise tensor network methods to systematically probe the role of entanglement in
the working of two variational quantum algorithms, the Quantum Approximate Optimisation Algorithm
(QAOA)[3] and Quantum Neural Networks (QNNs)[4], on prototypical problems under controlled entangle-
ment environments. We find that for the MAX-CUT problem solved using QAOA, the fidelity as a function
of entanglement is highly dependent on the number of layers, layout of edges in the graph, and edge density,
generally exhibiting that a high number of layers indicates a higher resilience to truncation of entanglement.
This is in contrast to previous studies[5] based on no more than four QAOA layers which show that the
fidelity of QAOA follows a scaling law with respect to the entanglement per qubit of the system. This
suggests that for certain classes of problems, QAOA may be successfully executed on quantum devices that
are incapable of generating highly entangled states.

Contrarily, in the case of QNNs, circuits trained to classify images in the standard image datasets (MNIST,
FMNIST and CIFAR) to high accuracy are underpinned by higher entanglement, as seen in Figure 1(a) with
any enforced limitation in entanglement resulting in a sharp decline in test accuracy. This is corroborated
by the entanglement entropy of these circuits which is consistently high suggesting that QNNs require quan-
tum devices capable of generating highly entangled states. We find little dependence on the circuit ansatz,
except in so far as some ansätze generate entanglement more slowly as a function of circuit depth. The
complexity of the dataset, although having a significant effect on the depth required to achieve high test
accuracy did not result in models which are inherently more resilient to enforced limitations in entanglement.

Additionally, we considered the change in entanglement entropy throughout trained QNN circuits as per
Figure 1(b). We find for deeper models that the entanglement entropy reduced slightly towards the end of
the circuit, indicating that deeper models perform classification in such a way that maximises the probability
of the same classification being made for any given input. On the other hand though, as entanglement only
drops off at the end of the circuit, regardless of circuit depth, it suggests that training QNN models layer by
layer would not be successful as the entanglement of a model at n layers is noticeably different for a model
with n layers compared to a model with N > n layers.

Overall our work provides a deeper understanding of the role of entanglement in the working of variational
quantum algorithms. In the current NISQ era of quantum computing where noise or errors in quantum
devices limit the entanglement that can be generated in quantum circuits, our work will enable their imple-
mentations with optimal accuracy within the constraint of affordable entanglement.
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[1] Bañuls, M. C. et al. “Simulation of many-qubit quantum computation with matrix product states”.
In: Physical Review A 73.2 (Feb. 2006), p. 022344. issn: 1050-2947, 1094-1622. doi:
10.1103/PhysRevA.73.022344.

[2] Nakhl, A. C. et al. “Calibrating the role of entanglement in variational quantum circuits”. In:
Physical Review A 109.3 (2024), p. 032413.

mailto:a.nakhl@student.unimelb.edu.au
https://doi.org/10.1103/PhysRevA.73.022344


Full

Linear

Linear Periodic

Alternating

Single CTRL

0.00

0.25

0.50

0.75

1.00
T

es
t

A
cc

u
ra

cy

20 Layers

M
N

IS
T

100 Layers

0.00

0.25

0.50

0.75

1.00

T
es

t
A

cc
u

ra
cy

B
M

N
IS

T
0.25 0.50 0.75 1.00

Entanglement per qubit

0.00

0.25

0.50

0.75

1.00

T
es

t
A

cc
u

ra
cy

0.25 0.50 0.75 1.00
Entanglement per qubit

C
IF

A
R

2

3

4

0 20 40 60 80 100

2

3

4

20 Layer QNN

60 Layer QNN

100 Layer QNN

0 10 20 30 40 50 60 70 80 90 100
Circuit Depth

0.0

0.2

0.4

0.6

0.8

1.0

E
n
ta

n
gl

em
en

t
E

n
tr

op
y

a)

b)

i)

ii)

Figure 1: a) Test accuracy for various datasets under limited entanglement simulations. The various circuit
ansatz are defined in Figure 1 of Ref. [2]. Note that deeper QNNs are more able to utilise entanglement in
a useful manner. We recognise that this is not necessarily a result of shallower circuits being less entangled
as shallower circuits are found to have as high an entanglement entropy for QNNs above 20 layer b) The
evolution of entanglement throughout the circuit for 20, 60 and 100 layer periodic ansatz QNNs trained on
i) the binary MNIST dataset and ii) the 10 class MNIST dataset. Test accuracies for i) are 0.998, 0.998 and
0.999 respectively and 0.728, 0.774 and 0.807 for ii).
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