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This study proposes a quantum computing approach to the design of machine learning 
kernels for classification of stochastic symbolic time series. In stochastic classification, the 
class of a sequence is defined by a probability distribution.  
 
The model is particularly relevant for several financial machine learning tasks, where 
due to the nature of the environment, the same event can be probabilistically classified 
into different classes. For instance, a sequence of trade orders might indicate security 
price manipulation with certain probability. Similarly, a sequence of security price 
movements might suggest future liquidity clustering towards buy or sell side, but only 
with a specific likelihood.        
 
In the area of machine learning, kernels are important components of various similarity-
based classification, clustering, and regression algorithms. They are functions, which 
quantify the similarity between examples in the context of a specific learning task. The 
conventional method for definitions of kernels is to map the examples to a high-
dimensional vector space and use a geometric metaphor of similarity as a dot product.    
 
In the context of a stochastic learning environments, we propose a probabilistic 
metaphor of similarity. Our kernels map the examples to the density operators of a 
quantum Hilbert space. The variational, or fidelity-based distances are used to quantify 
the similarity.   
 
To effectively implement this approach, we leverage a quantum generative model of 
the example space known as a quantum hidden Markov model (QHMM) [1]. The model 
reflects the partial observability and quasi-stationarity of the financial environments.  
 
A QHMM is a completely positive trace-preserving (CPTP) map (quantum channel) 
defined by a set of Kraus operators associated with observed symbols. Examples are 
described by the application of corresponding Kraus operators resulting in sequences 
of quantum states referred to as generative state sequences. The probability of a 
sequence is defined by the trace of the final density operator in the sequence. This 
modeling approach allows a formal learning model in the terms if a stochastic process 
language. The learning criteria is the divergence between model’s and target 
distributions of sequences.  
 
In an earlier study we have demonstrated that the QHMMs are parsimoniously superior 
to the corresponding classical HMMs: If a Markovian state process can be modeled in a 
classical stochastic vector space with 𝑁 dimensions, then there is an equivalent QHMM 
in quantum Hilbert space with √𝑁 dimensions. The implementation of these models in 
quantum gate computing framework is computationally feasible due to the 
smoothness and high autocorrelation of their learning landscapes.     
 



We introduce two types of kernels designed for specific classification tasks. Tasks in 
which the class of a sequence depends on its future stochastic evolution are referred to 
as predictive classification tasks. Given the assumption of a Markovian process, a 
sequence's future behavior depends solely on the final state in its generative state 
sequence. In such scenarios, the kernel evaluates the sequence similarity using a 
distance measure between their final generative states. Positive semidefinite distance 
measures, such as the Trace distance or Bures distance, are used to define these 
kernels. We demonstrate Lipschitz-style continuity between the variational distance of 
the density operators and the divergence of corresponding distributions of future 
observables. These kernels are referred to as "predictive kernels". 
 
In another category of tasks, the class of a sequence depends exclusively on its 
structure, such as the presence of specific patterns. We denote these tasks as 'structural 
classification tasks'. In such instances, the kernel maps a sequence to the expectation 
of the density operators in the generative state sequence. This design reflects the 
assumption that the expectation of the density operators captures the underlying 
patterns of the sequence: the important features are caused by generative states with 
stronger impact on the expectation. These kernels are defined as trace or Bures 
distances between expectations of density operators. Since the expectation of density 
operators are density operators, the kernels are positive semi-definite.  These kernels are 
referred to as "structural kernels".  
 
We have performed extensive empirical study on the impact of the size of the quantum 
Hilbert space on the proposed kernels behavior. The study confirms the expectation 
that increasing of the dimension of the quantum Hilbert space enhances the 
separability of examples.  
 
In the context of a classification task, we demonstrate that the example distances 
calculated by the proposed kernels are correlated with the classes of corresponding 
examples. Specifically, examples at shorter distance have high probability to belong to 
the same class. These kernel features are important for superior performance on 
classification tasks. 
 
To compare the performance of the proposed kernels against classical ones, we 
defined classification tasks using a simplified model of directional movements in a stock 
market.  Three common kernel-based algorithms - Support Vector Machine, k-Nearest 
Neighbors, and Gaussian Processes - were implemented with classical and quantum 
kernels. Two well-known classical algorithms - Random Forest and Extreme Gradient 
Boosting were used as benchmarks. In all structural and predictive task scenarios, the 
quantum kernels exhibited superior performance at clear confidence levels, compared 
to their classical counterparts and the benchmarks. 
 
We have calculated the kernel matrix for the market model example described in [1] 
running projected kernels on ibm_nazca device. To boost the effective number of shots 
we ran multiple circuits simultaneously in parallel on a single chip by combining them 
on a single circuit effectively using 72 qubits to generate 12 processes in parallel. The 



experiment yielded excellent agreement with the expected structure of the kernel 
matrix. 
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