
Leveraging Quantum Contrastive Learning and
Federated Averaging for Robust Out-of-Distribution

Generalization
Asitha Kottahachchi Kankanamge Don1, and Ibrahim Khalil1

1. STEM College, RMIT University, Melbourne, Australia
Correspondence: asitha.kottahachchi.kankanamge.don@student.rmit.edu.au

Introduction
Quantum Contrastive Learning (QCL) integrated with Vertical Federated Learning (VFL)
offers a transformative solution to challenges in data scarcity, adversarial robustness, and
scalability. The framework combines quantum-enhanced representations and supervised
contrastive loss to ensure secure, scalable, and privacy-preserving distributed training. Ap-
plications span privacy-sensitive domains such as healthcare, finance, and sensor networks,
where robust collaborative learning is essential without compromising data privacy.

Problem Definition

Figure 1: Federated Learning with Hybrid Clients: Quantum (Client #2) and classical clients (Client #1, Client
#3) collaborate in global model aggregation and face challenges.

Traditional machine learning frameworks face significant obstacles in distributed and
privacy-sensitive environments. Data scarcity limits model generalization in critical do-
mains like medical imaging. Classical federated learning models are vulnerable to attacks,
including membership inference, gradient leakage, and model inversion, exposing sensitive
data. Moreover, these approaches often struggle to handle heterogeneous data distributions
effectively. This work addresses these issues by integrating QCL and VFL into a secure, ef-
ficient, and scalable hybrid quantum-classical framework.

Framework Overview
The framework incorporates a Quantum Data Preprocessor to enhance feature diversity,
followed by a Quantum Encoder that compresses input data into meaningful embeddings
using parameterized quantum circuits. A Quantum Projection Head optimizes these em-
beddings for contrastive learning, ensuring robust feature separability. Enhanced Federated
Averaging aggregates model updates across distributed nodes, leveraging quantum-aware
weighting to prioritize nodes with richer feature representations.

Mathematical Framework
This research provides a theoretical analysis of the Quantum Contrastive Learning (QCL)
framework with Vertical Federated Learning (VFL), deriving convergence guarantees un-
der standard assumptions in quantum and federated learning. Empirical validation is
planned to assess practical performance. The QCL framework’s core comprises three com-
ponents: Quantum Image Processor (Data Augmentation Module), Quantum Autoencoder,
and Quantum Classifier, which together generate secure and robust embeddings for feder-
ated learning.

Figure 2: Quantum Contrastive Learning Framework: The framework integrates a quantum encoder, projec-
tion head, and a quantum classifier.

Quantum Image Processor. The Quantum Image Processor, also referred to as the Quan-
tum Data Augmentation Module, applies unitary transformations to increase the diversity
of input data. Given a classical image X ∈ Rd×d, it is transformed into a quantum state:

ψX = U(X)0, (1)

where U(X) is a parameterized quantum circuit that maps the classical image to a quantum
state. This transformation ensures higher variability in the input space, which is essential
for contrastive learning. The augmented quantum states are then passed to the Quantum
Autoencoder.
Quantum Autoencoder and Projection Head. The Quantum Autoencoder compresses the
high-dimensional quantum state into a lower-dimensional latent space. For a given quan-
tum state ψX , the encoder performs the transformation:

ϕX = VencψX , (2)

where Venc is a parameterized quantum circuit for encoding. The goal is to learn a latent
representation that minimizes the supervised contrastive loss, defined as:

Lcontrastive = − 1

|P (i)|
∑
i∈I

∑
p∈P (i)

log
exp(h(Xi) · h(Xp)/τ )∑

a∈A(i) exp(h(Xi) · h(Xa)/τ )
, (3)

where h(X) represents the embeddings produced by the projection head, τ is the temper-
ature parameter, P (i) denotes positive pairs, and A(i) represents all non-anchor pairs. The
projection head ensures that embeddings of similar data points are aligned while those of
different data points are well-separated.
The Quantum Autoencoder and Projection Head are trained jointly to optimize Lcontrastive,
enabling the extraction of meaningful and robust quantum feature embeddings.
Quantum Classifier. After the Quantum Autoencoder and Projection Head are trained,
the encoder network Venc is frozen and reused to produce embeddings for the Quantum
Classifier. The classifier operates on the latent states ϕX and maps them to classical feature
vectors h(X) through measurements:

h(X) =MϕX , (4)

where M is the measurement operator. The Quantum Classifier is trained separately using
a cross-entropy loss:

Lclassification = − 1

N

N∑
i=1

yi log(ŷi), (5)

where yi is the true label, and ŷi is the predicted probability for sample i. This two-
stage training process ensures that the Quantum Classifier leverages the robust embeddings
learned during contrastive training.
Global Framework Integration. The outputs of the Quantum Classifier are integrated into
the VFL framework through the enhanced Federated Averaging algorithm. The global loss
combines task-specific and regularization objectives:

L(Θ) = 1

N

N∑
i=1

f (Θ;Xi, yi) + λ

K∑
k=1

γ(Θk), (6)

where f (Θ;Xi, yi) is the classification loss, and γ(Θk) regularizes model parameters. Gra-
dient updates are aggregated dynamically to avoid biases between quantum and classical
clients. The aggregation weight wk for client k is defined as:

wk = α · ∥Hk∥∑
j∈quantum ∥Hj∥

+ (1− α) · ∆Lk∑K
j=1∆Lj

, (7)

where: - ∥Hk∥: Norm of the quantum embeddings for quantum clients. - ∆Lk: Improve-
ment in the global loss contributed by client k, for both quantum and classical clients. - α:
A tunable parameter balancing contributions from embedding strength and loss improve-
ment.
The dynamic adjustment ensures fairness by weighting nodes based on their contribution
to global performance and representation richness. This approach minimizes biases and
balances the influence of quantum and classical clients.

Convergence Analysis
The convergence of the Quantum Contrastive Learning (QCL) framework integrated with
Vertical Federated Learning (VFL) is established under standard assumptions of Lipschitz
continuity and bounded gradient variance.
Let L(Θ) be the global loss function, assumed to be L-smooth:

∥∇L(Θ1)−∇L(Θ2)∥ ≤ L∥Θ1 − Θ2∥. (1)

The variance of local gradients across nodes is bounded:

E∥∇Lk(Θ)−∇L(Θ)∥2 ≤ σ2. (2)

The global update rule, governed by Federated Averaging, ensures:

Θt+1 = Θt − η

K∑
k=1

wk∇Lk(Θk), (3)

where:
wk =

∥Hk∥∑K
j=1 ∥Hj∥

. (4)

Under these assumptions, the framework achieves a convergence rate of:

E[L(Θt)]− L∗ ≤ O
(
1

t

)
, (5)

where L∗ is the global minimum.
The quantum encoder reduces parameter dimensionality by compressing input states ψX
into latent states ϕX , minimizing gradient variance and improving stability in heteroge-
neous environments.
Dynamic weighting ensures nodes with richer quantum embeddings contribute more to
global updates, enhancing fairness and robustness in federated learning.

Summary
The proposed hybrid quantum-classical framework addresses critical challenges in dis-
tributed training by leveraging quantum-enhanced representations and robust privacy-
preserving mechanisms. Its scalability and theoretical guarantees make it an ideal solution
for privacy-sensitive applications, including healthcare, finance, and sensor networks.
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