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ABSTRACT

Parametrised quantum circuits offer expressive and data-efficient representations for machine learning.
Due to quantum states residing in a high-dimensional Hilbert space, parametrised quantum circuits
have a natural interpretation in terms of kernel methods. The representation of quantum circuits in
terms of quantum kernels has been studied widely in quantum supervised learning, but has been
overlooked in the context of quantum RL. This paper proposes parametric and non-parametric policy
gradient and actor-critic algorithms with quantum kernel policies in quantum environments. This
approach, implemented with both numerical and analytical quantum policy gradient techniques,
allows exploiting the many advantages of kernel methods, including data-driven forms for functions
(and their gradients) as well as tunable expressiveness. The proposed approach is suitable for
vector-valued action spaces and each of the formulations demonstrates a quadratic reduction in
query complexity compared to their classical counterparts. Two actor-critic algorithms, one based on
stochastic policy gradient and one based on deterministic policy gradient (comparable to the popular
DDPG algorithm), demonstrate additional query complexity reductions compared to quantum policy
gradient algorithms under favourable conditions.

1 Introduction

Reinforcement learning (RL) is a technique for interactively learning from an environment from rewards which has been
successful across a wide range of applications. Unfortunately, RL has high sample complexity, i.e. it requires many data
samples before a high-performing policy is learned. With the aim of reducing the sample complexity, several works have
proposed applying RL systems within quantum-accessible environments, where interactions with the environment occur
within a quantum system allowing to make use of superpositions across state-action trajectories. While exponential
sample complexity improvements have only been shown for a special case environment formulated around Simon’s
problem [DLWT17], recent quantum policy gradient algorithms demonstrate benefits in terms of quadratic sample
complexity improvements when applying a parametrised quantum circuit within a quantum environment due to the
properties of quantum superpositions [JCOD23]. Moreover, several quantum RL works demonstrate that by using
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parametrised quantum circuits (PQCs), the number of parameters can be reduced compared to using classical neural
networks [Lan21, Che23] – although this line of investigation has primarily focused on classical environments.

Despite the promise of quadratic or better improvements, limited work has been done in designing quantum algorithms
and suitable PQCs for quantum-accessible environments. Previous work has introduced various PQCs for classical RL
[JGMB21], namely Raw-PQC and Softmax-PQC, which were put to the test as RL policies in classical environments
based on numerical experiments in hardware-efficient PQCs [KMT+17] with data-reuploading [PSCLGFL20]. These
PQCs were then used in a theoretical study on the sample complexity of quantum policy gradient techniques, including
analytical gradient estimation using quantum Monte Carlo techniques and a numerical quantum gradient estimation
technique based on central differencing [JCOD23]. PQCs have also been applied to the quantum control context, where
the overall sample complexity is not mentioned [WJW+20] or is without quadratic improvement [SSB23].

Due to quantum states residing in a high-dimensional Hilbert space, PQCs have a natural interpretation in terms of
kernel methods. While so far, this property has been discussed widely for supervised learning [SK19, Sch21], this has
not yet been adopted in RL.

Our work is inspired by streams of work in classical RL that use kernel-based formulations of the policy [LS15, BS03].
We formulate Gaussian and softmax policies based on quantum kernels and analyse their efficiency across various
optimisation schemes with quantum policy gradient algorithms. While maintaining quadratic query complexity
speedups associated with QPG, the use of quantum kernels for the policy definition leads to advantages such as
analytically available policy gradients, tunable expressiveness, and techniques for sparse non-parametric representations
of the policy within the context of vector-valued state and action spaces. This also leads to a quantum actor-critic
algorithm with an interpretation as performing a natural gradient. Unlike quantum algorithms for natural policy gradient
[MSP+23, SSB24], the proposed algorithm is formulated within the kernel method framework and is tailored to the
quantum accessible environment where it can exploit a quadratic sample complexity improvement as well as a variance
reduction as is often associated with actor-critic RL.

1.1 Using quantum kernels for reinforcement learning policies

Kernel methods have strong theoretical foundations for functional analysis and supervised learning (see e.g. [SS03]
for an overview). We review some of these useful properties here and how they can be applied to formulate and learn
efficient policies for quantum RL.

Each kernel corresponds to an expressible function space through its reproducing kernel Hilbert space (RKHS; see
Section 2.2). The choice of the kernel function thereby provides an opportunity to balance the expressiveness, training
efficiency, and generalisation. For instance, reducing the bandwidth factor to c < 1 of the squared cosine kernel

κ(s, s′) =
d∏

j=1

cos2(c(sj − s′j)/2) (1)

restricts features to parts of the Bloch sphere, allowing improved generalisation [CPP+22], as well as expressiveness
control, considering expressiveness can be measured based on the distance to the Haar distribution [NY21]. Optimising
or tuning a single parameter is significantly more convenient compared to redesigning the ansatz of a PQC. More
generally, kernel methods provide a relatively interpretable framework to form particular functional forms.

Kernel functions inherently define a particular feature-map. This interpretation follows from Mercer’s theorem, which
states that every square-integrable kernel function can be written as

κ(s, s′) =
∞∑

i=1

λiei(s)ei(s
′) ,

where for all i, ei is an eigenfunction such that λiei(s′) = TK [ei](s
′) =

∫
X κ(s, s

′)ei(s)dµ(s) with eigenvalue λi,
where µ is a strictly positive Borel measure (e.g. the Lebesgue measure) for continuous X or the counting measure for
discrete X . Mercer’s theorem leads to the kernel trick,

κ(s, s′) = ⟨ϕ(s), ϕ(s′)⟩ ,
which allows writing the kernel function as an inner product based on a feature-map ϕ. For quantum kernels, this
conveniently allows a definition of kernels in terms of the data encoding as a feature-map. For instance, the basis
encoding corresponds to the Kronecker delta kernel, the amplitude encoding corresponds to the inner product quantum
kernel, etc. [Sch21]. We construct kernel-based policies which construct kernel computations in quantum circuits both
in the explicit view and the implicit (i.e. inner product) view (see Section 4).
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Kernel regression can be done in a data-driven (non-parametric) manner, i.e. based on a representative set of input-output
pairs. In the context of RL, the data are state-action pairs, which often have lower dimensionality compared to parameter
vectors. The representer theorem guarantees that the optimal function approximator in the RKHS can be written as a
linear combination of kernel evaluations based on input-output samples, which leads to the formulations of support
vector machines and kernel regression. In quantum supervised learning, one uses this property to evaluate the kernel in
a quantum device and then compute the prediction in a quantum or a classical device [SK19, JFP+23]. In a quantum
RL setting, we analogously consider the optimal deterministic policy µ as a linear combination of kernel computations
with regard to a select subset of the states:

µ(s) =

N∑

i=1

βiκ(s, ci) , (2)

where s is the current state, and {ci, βi}Ni=1 are state-action pairs as representative data points (“representers” for short).
Using this quantity as the mean of a Gaussian distribution allows the quantum analogue of the Gaussian policies that
are popular in classical RL with vector-valued action spaces. We will formulate a special class of PQCs which form
circuits with Eq. 2 as their expectation, allowing a novel way to form expressive and coherent policies in the context
of quantum environments (see Section 4). We will show (see e.g. Section 6.3.2 and Section 6.4) that this comes with
analytical forms for the gradient and that it is suitable for various non-parametric optimisation schemes.

By performing regularisation in the context of kernel ridge regression, we make use of the result that for every RKHS
HK with reproducing kernel K, and any g ∈ HK ,

||g||2HK
= ⟨g, g⟩HK

=

∫
(Rg(x))2dx

where the operator R : HK → D can be interpreted as extracting information from the function value which gets
penalised during optimisation [SS03]. For instance, it can penalise large higher or lower order derivatives, large function
values, or still other properties, leading to smoother optimisation landscapes and therefore improved convergence to the
global optimum. This property contributes to an improved query complexity when considering actor-critic algorithms
with smooth critic functions (see Section 6.4) and can also be exploited when directly optimising the kernel (see
Section 7.3).

1.2 Overview of the contributions

Motivated by the potential benefits of kernel policies, this work contributes the following theoretical results to the field
of quantum RL:

• In Section 4, we propose two classes of quantum kernel policies (QKPs) for learning in quantum-accessible
environments. First, we propose Representer PQCs, which incorporate representer theorem based formalisms
directly within a quantum circuit and which are suitable for both analytical and numerical gradient based
optimisation. Second, we propose Gaussian kernel-based policies based on a classically known mean function
and covariance, which due to the mean and covariance being parametrised classically has known analytical
gradient, thereby removing the need for expensive estimation procedures required for analytical quantum
policy gradient with traditional PQCs. Via Claim 4.3, we also provide a formula to scale the number of
representers based on a Lipschitz constant.

• In Section 5, we use a central differencing approach on phase oracles of the value function for a numerical
quantum policy gradient algorithm [JCOD23] based on Representer PQCs. We report a query complexity
comparable to Jerbi et al. [JCOD23] but note the potentially lower number of parameters.

• In Section 6, we use analytical quantum policy gradient algorithms which perform quantum multivariate
Monte Carlo on binary oracles of the policy gradient. We first confirm (see Section 6.2) that applying quantum
analytical policy gradient to kernel-based policies yields a query complexity that is comparable to Jerbi et al.
[JCOD23].

• Section 6.3 proposes two further improvements in an algorithm we call Compatible Quantum RKHS Actor-
Critic (CQRAC). First, the parameter dimensionality of the policy is reduced by using vector-valued kernel
matching pursuit. Second, we formulate a quantum oracle, which we call the state-action occupancy oracle,
which computes the policy gradient samples based on the critic’s prediction on a particular state-action pair
rather than on the cumulative reward of the trajectory, thereby reducing the variance of the estimate produced by
analytical quantum policy gradient. Theorem 6.2a demonstrates that the resulting query complexity depends on
the maximal deviation from a baseline estimate, rather than on the maximal cumulative reward. Theorem 6.2b
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Table 1: Query complexity of policy gradient estimation with PQCs. General notations: A is the action space; rmax
denotes the maximal absolute reward; T is the horizon; d is the parameter dimensionality; γ is the discount factor; and
ϵ is the tolerance for error in the gradient estimate. Specific notations: T is the temperature of the softmax; D is an
upper bound on higher-order derivatives of the policy; ∆Q is the maximal absolute deviation of the critic’s prediction
to a baseline estimate; N is the number of representers in a kernel policy; σQ is an upper bound on the standard
deviation of the critic’s prediction to the baseline estimate; upper bounds on p-norms are denoted as Bp for the gradient
of the log-policy, as σ∇p for the standard deviation of the partial derivative of the log-policy, as κmax

p for the kernel
computations across policy centres, and as Cp for the gradient of the critic w.r.t. actions; and ξ(p) = max{0, 1/2−1/p}
is used for converting across p-norms.

Algorithm Oracle and estimation Query complexity

1. Policy gradient with Softmax-PQC [SSB23] Return oracle, single-qubit para-
meter shift rule [SBG+19], and clas-
sical Monte Carlo

Õ
(

T 2r2maxT
2

ϵ2(1−γ)2 )
)

2. Numerical QPG and Raw-PQC [JCOD23] Return oracle, quantum gradient
estimation via central differencing
[Cor19]

Õ
(√

dDTrmax
ϵ(1−γ)

)

3. Analytical QPG and Softmax-PQC[JCOD23] Analytical gradient oracle, bounded
quantum multivariate Monte Carlo
(Theorem 3.3 [CHJ22])

Õ

(
dξ(p)

BpTrmax

ϵ(1− γ)

)

Proposed: Numerical QPG in RKHS cf.2 cf.2 but d = NA

Proposed: Analytical QPG in RKHS cf.3 cf.3 but d = NA

Proposed: CQRAC Analytical gradient oracle, near-
optimal quantum multivariate
Monte Carlo (Theorem 3.4
[CHJ22])

Õ
(
dξ(p)

∆QBp

(1−γ)ϵ

)
for d = NA

Õ
(
dξ(p)σQσ∇p

(1−γ)ϵ

)
for d = NA

Proposed: DCQRAC cf.3 Õ
(
dξ(p)

κmax
p Cp

(1−γ)ϵ

)
for d = NA

provides an improved result which exploits an upper bound on the variance of the gradient of the log-policy,
and thereby demonstrates how smooth policies such as the Gaussian kernel-based policy can give additional
query complexity benefits.

• Section 6.4 proposes Deterministic Compatible Quantum RKHS Actor-Critic (DCQRAC), which is based
on the deterministic policy gradient theorem [SLH+14]. The approach makes use of similar formalisms as
its non-deterministic counterpart, though with the key differences that it is based on state occupancy rather
than state-action occupancy, and that the policy gradient takes a different form, leading to a different query
complexity result. In particular, Theorem 6.3 demonstrates that the resulting query complexity depends on the
norm of kernel features and the gradient norm of the critic, which illustrates the importance of techniques such
as kernel matching pursuit and regularisation.

Our query complexity results compare favourably to other methods to compute the policy gradients of PQCs, as
illustrated in Table 1.

2 Preliminaries

2.1 Markov Decision Processes and classical policy gradient algorithms

The Markov Decision Process (MDP) is the standard task-modelling framework for RL. The framework is defined by
a tuple (S,A, r, γ, P, T ), where S is the state space, A is the action space, r : S × A → [−rmax, rmax] is the reward
function, γ ∈ (0, 1) is the discount factor, and P : S × A → ∆(S) is the unknown true transition dynamics model
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outputting a distribution of states within the probability simplex ∆(S) = {P ∈ R|S| : P ⊺1 = 1}. Last, the horizon T
indicates the number of time steps.

The MDP proceeds in T -step episodes of the following nature. First, the agent is initialised to a particular state
s0 ∼ d0, where d0 is the starting distribution, and the agent takes an action according to its policy a0 ∼ π(·|s). Then
for t = 1, . . . , T − 1, the transition dynamics model reacts with st ∼ P (·|st−1, at−1) and the agent takes action
at ∼ π(·|st). The agent also receives a reward r(st, at) for each t = 0, . . . , T − 1.

The policy is learned by optimising the value, an objective which is based on the rewards the agent obtains in the
episodes. In particular, the state-value is defined by the expected discounted cumulative reward when executing a policy
from a given state s ∈ S for T time steps,

V (s) = E

[
T−1∑

t=0

γtr(st, at)|s0 = s, at ∼ π(·|st), st+1 ∼ P (·|st, at)
]
, (3)

and the quantity V (d0) = Es0∼d0 [V (s0)] is then often used as the agent’s objective. Another useful notation is
the state-action value (or Q-value), which indicates the value of executing a policy from a given state-action pair
(s, a) ∈ S ×A; it is formulated as

Q(s, a) = E

[
T−1∑

t=0

γtr(st, at)|s0 = s, a0 = a, at ∼ π(·|st), st+1 ∼ P (·|st, at)
]
. (4)

A few further notations are useful to work with MDPs. First, a notation that will often be used for state action pairs is
z = (s, a). Second, we use

P (τ) = d0(s0)π(a0|s0)
T−1∏

t=1

P (st|st−1, at−1)π(at|st) (5)

to denote the probability of the T -step trajectory τ = s0, a0, . . . , sT−1, aT−1. Third, the notation

Pt(s|π) = Eπ[I(st = s)] (6)

refers to the probability under policy π that st = s at time t, and analogously the notation

Pt(s, a|π) = Eπ[I((st, at) = (s, a))] (7)

refers to the probability under policy π that (st, at) = (s, a) at time t.

As the policy π is parametrised by θ, policy gradient algorithms aim to maximise the value of that policy by updating
the policy parameters according to gradient ascent,

θ ← θ + η∇θV (d0) .

For MDPs, an optimal deterministic policy µ∗ : S → A is guaranteed to exist (see Theorem 6.2.7 in [Put94]) and we
devise stochastic policies to explore the state-action space before converging to a (near-)optimal deterministic policy.

2.2 Reproducing Kernel Hilbert Space

A kernel K : X × X → Y is a function that implicitly defines a similarity metric in a feature Hilbert space HK
through feature-maps of the form ϕ(x) = K(·, x). Kernels have the defining property that they are positive definite and
symmetric, such that K(x, y) ≥ 0 and K(x, y) = K(y, x) for all x, y ∈ X . Reproducing kernels have the additional
reproducing property, namely that if f ∈ HK , then

f(x) = ⟨f(·),K(·, x)⟩ . (8)

If a reproducing kernel K spans the Hilbert space HK , in the sense that span{K(·, x) : x ∈ X} = HK , then HK is
called a reproducing kernel Hilbert space (RKHS).

Operator-valued RKHS: Traditionally, kernel functions are scalar-valued, i.e. Y = R or Y = C. However, the RKHS
can also be formulated to be operator-valued by formulating a kernel function such that K(x, y) outputs a matrix in
CA×A, where A is the output dimensionality. The paper will include two settings, namely the trivial case

K(x, y) = κ(x, y)IA , (9)
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where κ is a real- or complex-valued kernel, and the more general case

K(x, y) = κ(x, y)M , (10)

where a matrix M additionally captures scaling factors for each output dimension on the diagonal elements and the
correlations between the output dimensions on non-diagonal elements.

Quantum kernels. In the context of quantum kernels, a variety of different Hilbert spaces need to be distinguished. In
general, a quantum system with discrete basis can be described in terms of a 2n-dimensional Hilbert space, a vector
space C2n with inner product ⟨x|y⟩ = ∑2n

i=1 x
∗
i yi. In the context of quantum kernels, two Hilbert spaces are often

mentioned (see e.g. [Sch21]). First, corresponding to each quantum kernel is a quantum encoding (or feature-map),
which is often named this way since it encodes classical data x into a quantum state |ϕ(x)⟩ ∈ C2n , corresponding to
the density matrix ρ = |ϕ(x)⟩⟨ϕ(x)| ∈ C2n×2n . Tab. 2 provides an overview of a few selected quantum kernels based
on [Sch21]. A second Hilbert space of interest is the space of quantum models, a space of functions Hκ defined for
a particular kernel κ such that each f ∈ Hκ takes the form of Eq. 2. This space is directly related to the previous in
the sense that the kernel can be expressed in terms of an inner product over feature-maps. They can also be expressed
equivalently in terms of the density matrix as f(x) = Tr(ρH) where H is an Hermitian operator representing the
measurement. Due to spanning the space and having the reproducing property, the space of quantum models, i.e. HK , is
an RKHS. We note that in our approach, we are interested in computing kernel functions over vector-valued eigenstates
and eigenactions. With classical parametrisation of quantum circuit this is not a challenge. In quantum circuits, it
becomes challenging to perform such computations coherently. Given the given the matching input types in Tab. 2, the
basis encoding, i.e. the Kronecker delta, is a natural choice. We explore the Kronecker delta as well as more general
inner product circuits parametrised by the eigenstate.

Kernel policies. To design kernel policies for MDPs, our first approach is to use quantum models in the above sense.
In this approach, state preparation techniques implement a wave function related to the representer formula; classical
kernels, such as Matérn kernels and radial basis function kernels, are also supported since their computation can be
stored in binary memory. Our second approach is to formulate the representer formula completely within the quantum
circuit through controlled rotation gates and amplitude encodings of inner products.

Table 2: Overview of selected quantum kernels and their basic properties, including encoding, space complexity, and
time complexity. The number of qubits in the computational basis is given by n. The notation round(x) refers to
rounding the number x to the closest element in the computational basis. For vector-valued states, n = kS, where S is
the dimensionality of the state-space and k is the per-dimension precision. |vi⟩ refers to the i’th computational basis
state.

Encoding Kernel Space
(qubits)

Time
(depth)

Basis encoding
ϕ : RS → C2n×2n

x 7→ |round(x)⟩⟨round(x)|

Kronecker delta
κ(x, x′) = |⟨round(x)|round(x′)⟩|2 = δx,x′

O(n) O(1)

Amplitude encoding
ϕ : C2n → C2n×2n

x 7→ |x⟩⟨x| =∑2n

i,j=1 xix
∗
j |vi⟩⟨vj |

Fidelity kernel/Quantum kernel of pure states
κ(x, x′) = |⟨x|x′⟩|2

O(n) O(2n)

Repeated amplitude encoding
ϕ : C2n → C2rn×2rn

x 7→ (|x⟩⟨x|)⊗r
r-power quantum kernel of pure states
κ(x, x′) =

(
|⟨x|x′⟩|2

)r O(rn) O(2n)

Rotation encoding
ϕ : Rn → C2n×2n

x 7→ |φ(x)⟩⟨φ(x)|,
|φ(x)⟩ =∑1

q1,··· ,qn=0

∏n
j=1 cos(xj)

qj sin(xj)
1−qj |q1, . . . , qj⟩

Variant of Squared cosine kernel
κ(x, x′) =

∏n
j=1 | cos(xj − x′j)|2

O(n) not
given

2.3 Gradient estimation and approximations

The policy of the RL algorithm will be parametrised by θ, which is a d-dimensional set of variables. Sets of the form
{1, 2, . . . , n} are written as [n] for short. We define the multi-index notation α = (α1, . . . , αn) ∈ [d]n for αi ∈ N+.
The notation is useful for higher-order partial derivatives of the form ∂αf(x) = ∂n

∂α1α2...αn
f(x). We also use the
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following notation for truncation with respect to the ℓ2 norm, namely

[[x]]
b
a =

{
x for ∥x∥2 ∈ [a, b]

0 otherwise.

In addition to standard big O notations, we also use ϵ = OP (n−x) to denote the rate of convergence in probability,
i.e. that there exists a δ > 0 such that for all n and with probability at least 1 − δ, the error satisfies ϵ ≤ Cn−x for
some constant C > 0. Moreover, for two positive sequences xn and yn, the notation xn ≍ yn is used to indicated that
C ≤ xn/yn ≤ C ′ for some constants C,C ′ > 0.

2.4 The quantum-classical setup

The above learning representation is implemented in a quantum-classical setup, in which the environment interactions
occur on a quantum device whereas learning parameters are stored and updated on a classical device. The interaction
is assumed to follow the same conventions as in the quantum policy gradient setting, where the agent obtains T -step
trajectories from queries to a set of quantum oracles [JCOD23].

Definition 2.1. Quantum oracles for MDP access. The following types of quantum oracles are used, with the first four
being essential and the last two building on the previous:

• Transition oracle OP : |s, a⟩|0⟩ → |s, a⟩∑s′∈S
√
P (s′|s, a)|s′⟩.

• Reward oracle OR : |s, a⟩|0⟩ → |s, a⟩|r(s, a)⟩.

• Initial state oracle Od0 : |0⟩ →∑
s∈S

√
d0(s)|s⟩.

• Quantum policy evaluation (see e.g. Fig. 3) Π : |θ⟩|s⟩|0⟩ → |θ⟩|s⟩∑a∈A
√
π(a|s)|a⟩. The oracle applies the

policy with parameters θ coherently to the superposition over states.

• Trajectory oracle UP : |θ⟩|0⟩ → |θ⟩|s0⟩
∑
τ

√
P (τ)|s0, a0, s1, a1, . . . , sT−1, aT−1⟩,

where P (τ) = d0(s0)π(a0|s0)
∏T−1
t=1 P (st|st−1, at−1)π(at|st). The oracle uses 1 call to Od0 , T calls to Π,

and T − 1 calls to OP to define a superposition over trajectories.

• Return oracle UR : |τ⟩|0⟩ → |τ⟩|R(τ)⟩. This oracle computes the discounted return of the trajectory
superpositions, and is based on T calls to OR.

The oracles are then combined as subroutines of a quantum gradient estimation algorithm, which returns an ϵ-close
approximation to the policy gradient X̄ ≈ ∇θV (d0). The parameter vector θ can then be updated classically according
to the policy gradient update θ ← θ + ηX̄ . The quantum circuit is then updated with the new θ for the subsequent
episode(s).

2.5 Vector-valued state and action spaces

To represent a rich class of state and action spaces, we represent classical states S as Sk-bit representations of
vectors in CS , classical actions A as Ak-bit representations of vectors in CA, and classical rewards R as k-bit
representations of scalars in R. Using similar terminology as in [DCLT08], we refer to these as eigenstates, eigenactions,
and eigenrewards, and these form the computational basis. The agent will be in a superposition over eigenstates,
i.e. a quantum state of the form |s′⟩ = ∑

s∈S c(s)|s⟩ ∈ C2Sk

, where
∑
s∈S |c(s)|2 = 1 and any quantum state in

this context |s′⟩ = |s′[0][0], . . . , s′[0][k − 1], s′[1][0], . . . , s′[1][k − 1], . . . , s′[S − 1][k − 1]⟩. Similarly, a quantum
action can be written as a superposition of eigenactions |a′⟩ =∑a∈A c(a)|a⟩ ∈ C2Ak

where
∑
a∈A |c(a)|2 = 1 and

|a′⟩ = |a′[0][0], . . . , a′[0][k − 1], a′[1][0], . . . , a′[1][k − 1], . . . , a′[A− 1][k − 1]⟩. Rewards are superpositions of the
form |r′⟩ =∑r∈R c(r)|r⟩ where

∑
r∈R |c(r)|2 = 1 and |r′⟩ = |r′[0], . . . , r′[k − 1]⟩.1 As in the above, the remainder

of the document will use the double square bracket notation to indicate the dimension and qubit index in the first and
second bracket, respectively. When using a single bracket, e.g. s[j], it refers to all qubits in the j’th dimension. A
related notation that will be used is |0⟩ instead of |0⟩⊗n when this is clear from the context.

1While we assume the reward function is deterministic, the rewards are in superposition due to the dependency on the trajectory
superposition.
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3 Background

Our work will make use of formalisms introduced by four classes of prior works. The first set of formalisms is related
to the quantum policy gradient algorithms due to Jerbi et al. [JCOD23], which allows us to use the above-mentioned
quantum oracles to efficiently compute the policy gradient using both numerical and analytical techniques. The second
set of formalisms pertains to the work by Lever and Stafford [LS15], who formulate classical Gaussian kernel-based
policies within an operator-valued RKHS framework, the extension of which leads to our Compatible Quantum RKHS
Actor-Critic algorithm. The third set of formalisms is based on the work of Bagnell and Schneider [BS03], who
formulate softmax policies within RKHS for REINFORCE, an approach we also cover in our query complexity analysis.
Finally, to bound the error of the classical critic in our actor-critic algorithms, we also make use of results on the
convergence rate of kernel ridge regression by Wang and Jing [WJ22].

3.1 Quantum policy gradient

Jerbi et al. propose quantum policy gradient algorithms for numerical and analytical gradient estimation for quantum-
accessible MDPs as mentioned in Definition 2.1.

3.1.1 Quantum policies

When trajectories are sampled within a quantum-accessible MDP, the policy π is evaluated according to the policy
evaluation oracle Π and can be expressed classically in terms of the expectation of a PQC. Previous work [JGMB21,
JCOD23] formulates three variants of PQCs to support their derivations. The Representer PQCs that we propose in
Section 4 can be cast to such PQCs, exploiting their properties.

The Raw-PQC as defined below provides a circuit for coherent policy execution (directly applicable to Π) and allows us
to exploit bounds on higher-order derivatives for query-efficient numerical policy gradient algorithms.
Definition 3.1. Raw-PQC. The Raw-PQC [JGMB21, JCOD23] defines

πθ(a|s) = ⟨Pa⟩s,θ , (11)
where Pa is the projection associated to action a such that

∑
a Pa = I, PaPa′ = δa,a′Pa, and the expectation

⟨Pa⟩s,θ = ⟨ψs,θ|Pa|ψs,θ⟩ is the probability of being projected onto the basis state |a⟩.
A second class of policies derived from PQCs is the Softmax-PQC which implements softmax policies from a PQC.
Definition 3.2. Softmax-PQC. The Softmax-PQC [JGMB21] defines the policy as

πθ(a|s) =
eT ⟨Oa⟩s,θ

∑
a′∈A e

T ⟨Oa⟩s,θ , (12)

where T > 0 is a temperature parameter. Defining θ = (w, ϕ), the observables in Eq. 12 are given by

⟨Oa⟩s,ϕ = ⟨ψs,ϕ|
Nw∑

i=1

wiHa,i|ψs,ϕ⟩ ,

where wa,i ∈ R and Ha,i is a Hermitian operator. Both w and ϕ are trainable parameters, where ϕ refers to parameters
within the circuit (e.g. rotation angles).

A particularly useful special case is the Softmax-1-PQC as defined below, which allows us to exploit an upper bound on
its analytical gradient for query-efficient analytical policy gradient algorithms.
Definition 3.3. Softmax-1-PQC. The Softmax-1-PQC [JCOD23] is an instance of Softmax-PQC for which ϕ = ∅ and
for all a ∈ A, Ha,i = Pa,i is a projection on a subspace indexed by i such that

∑Nw

i=1 Pa,i = I and Pa,iPa,j = δi,jPa,i
for all i = 1, . . . , Nw.

3.1.2 Numerical policy gradient

To estimate the policy gradient with minimal query complexity, we make use of numerical gradient estimation based on
quantum gradient estimation of Gevrey functions [Cor19]. To implement the policy in this case, we design circuits
which perform a set of controlled rotations based on real-valued parameters θ such that their expectation is a representer
formula for some particular kernel.

This numerical approach is based on central differencing, which implements a quantum circuit that obtains the value for
different settings of the policy parameters to estimate the gradient of the value. Doing so requires a phase oracle for the
value as defined below.
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Definition 3.4. A phase oracle of the value function (Lemma 2.3 and Theorem 3.1 in [JCOD23]; Corollary 4.1
[GAW19]) encodes the phase of the value function V (d0; θ) =

∑
τ P (τ)R(τ) into the input register, according to

OV : |θ⟩ → |θ⟩eiṼ (d0;θ) ,

where Ṽ (d0; θ) =
V (d0;θ)(1−γ)

rmax
∈ [−1, 1] is the normalised value, and θ parametrises the policy (and thereby P (τ)

and V (d0; θ)). The phase oracle can be obtained up to ϵ-precision within O(log(1/ϵ)) queries to a probability oracle
of the form:

OPV : |θ⟩|0⟩ → |θ⟩
(√

Ṽ (d0; θ)|ψ0(θ)⟩|0⟩+
√

1− Ṽ (d0; θ)|ψ1(θ)⟩|1⟩
)
,

where |ψ0(θ)⟩ and |ψ0(θ)⟩ are (often entangled) states in an additional register.

The central differencing technique can be used on functions which satisfy the Gevrey condition.

Definition 3.5. For any function f : Rd → R, the Gevrey condition is a smoothness condition according to which,
for some parameters M > 0, c > 0, and σ ∈ [0, 1], the higher order derivative with respect to multi-indices α ∈ [d]p

satisfies

|∂αf(x)| ≤
M

2
cp(p!)σ (13)

for all p ∈ N0 and all x ∈ X ⊂ Rd.

The value function is one such function, as shown in the lemma below, and its Gevrey smoothness depends critically on
the higher-order derivatives of the policy as well as parameters of the MDP.

Lemma 3.1. Gevrey value function (Lemma F.1 in Jerbi et al. [JCOD23]). The value V (θ) := V (d0; θ) as a function
of the policy parameters satisfies the Gevrey condition with σ = 0, M = 4rmax

1−γ , and c = DT 2 where D is an upper
bound on the higher-order derivative of the policy:

D = max
p∈N0

Dp

Dp = max
θ∈S,α∈[d]p

∑

a∈A
|∂απθ(a|s)| , (14)

where α ∈ [d]p.

Following the Gevrey smoothness with the above parameters for σ, M , and c, and phase oracle access to V (θ), quantum
gradient estimation of Gevrey functions [Cor19] provides precise estimates with limited query complexity.

Lemma 3.2. Quantum policy gradient estimation of Gevrey value functions (Theorem 3.1 in Jerbi et al. [JCOD23]).
Quantum gradient estimation computes an ϵ-precise estimate of ∇θV (d0) such that ||X̄ − ∇θV (d0)||∞ ≤ ϵ with
failure probability at most δ within

Õ
(√

d
DT 2rmax

ϵ(1− γ)

)
, (15)

yielding a quadratic improvement over the query complexity of the classical numerical gradient estimator (see Lemma
G.1 in [JCOD23] and Appendix A):

Õ
(
d

(
DT 2rmax

ϵ(1− γ)

)2
)
. (16)

queries to UP and UR (i.e. O(T ) time steps of interaction with the quantum environment).

To demonstrate Lemma 3.2, Jerbi et al. apply quantum gradient estimation of Gevrey functions (Algorithm 3.7 and
Theorem 3.8 of [Cor19]) on the phase oracle of the value function (OV in Definition 3.4), which yields an ϵ-precise
estimate of ||X̄ −∇θV (d0)||∞ ≤ ϵ with failure probability at most δ within

Õ
(
Mcdmax{σ,1/2}

)
(17)

queries. Filling in σ, M , and c into Eq. 17 based on their values in Lemma 3.1 yields the desired result.
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3.1.3 Analytical policy gradient

We further make use of an alternative policy gradient estimation based on quantum multivariate Monte Carlo [CHJ22].

The technique as implemented by Jerbi et al. [JCOD23] uses an analytical expression based on the policy gradient
theorem [SB18], following the limited rollout implementations of the REINFORCE algorithm [PS08],

∇θV (d0) = E

[
T−1∑

t=0

∇θ log(π(at|st))
T−1∑

k=0

γkrk

]
. (18)

The quantity within the expectation of Eq. 18 is highly stochastic with high variance. To estimate the analytical policy
gradient from a quantum oracle, we conduct quantum experiments with binary oracle access.
Definition 3.6. A binary oracle of the random variable X : Ω → Rd obtained from a quantum experiment (see
Definition 2.14.1 and 2.14.2 in [JCOD23]) is given by

UX,Ω : |0⟩ →
∑

ω∈Ω

√
P (ω)|ω⟩|X(ω)⟩ ,

where ω ∈ Ω is the outcome of the experiment, and |X(ω)⟩ encodes X(ω) into a binary representation.

The trajectory oracle UP and UR can be used to form a binary oracle for the analytical expression in Eq. 18, in which
case each outcome ω ∈ Ω is a trajectory τ = s0, a0, s1, a1, . . . , sT−1, aT−1. Similarly, we also formulate alternative
oracles for actor-critic formulations, which are based on state(-action) occupancies, in which case ω ∈ S or ω ∈ S ×A,
reflecting the discounted frequency of different states or state-action pairs. Each such state(-action) can then be coupled
to an analytical expression depending on the critic’s prediction, which is implemented in the final computation of UX,Ω
by calling another binary oracle OX,Ω which computes the expression controlled on the state(-action). The actor-critic
algorithm defined in this way helps to reduce the variance of the policy gradient compared to the expression depending
on the high-variance cumulative reward.

As we will design kernel policies, the analytical policy gradient will include an expression in Cd or Rd depending on
the kernel and the action space. While our exposition will focus on the real-valued case for simplicity, for analytical
gradient estimation, we treat the complex-valued case as R2d, which is straightforward since outcome-dependent
formulas of the policy gradient can be given by a binary oracle and the expectation of a complex random variable can
be decomposed into the expectations of real and imaginary parts.

Work in quantum Monte Carlo [Mon17, vA21, CHJ22] uses quantum algorithms such as phase estimation and amplitude
estimation to efficiently estimate the mean of a random variable using quantum oracles (i.e. binary, probability, and/or
phase oracles). Results typically provide quadratic query complexity speedups over classical estimators. Recently,
multivariate quantum Monte Carlo has been proposed as a technique to estimate the mean of multi-dimensional vectors.
Using techniques proposed by Cornelissen [CHJ22], this approach has been used to compute high-precision estimates
of the policy gradient [JCOD23].
Lemma 3.3. Quantum multivariate Monte Carlo for REINFORCE (Theorem 4.1 of [JCOD23]) Let ϵ > 0 and p > 0.
QBounded (Theorem 3.3 [CHJ22]) yields an ϵ-precise estimate of∇θV (d0) w.r.t ℓ∞-norm within

O
(
dξ(p)

BpTrmax log(d/δ)

ϵ(1− γ)

)
(19)

queries to UP and UR (i.e. O(T ) time steps of interaction with the quantum environment), where ξ(p) = max({0, 1/2−
1/p}) and Bp ≥ ∥∇θ log(π(at|st))∥p. Conversely, the classical policy gradient has query complexity following from
Appendix A,

O
((

BpTrmax log(d/δ)

ϵ(1− γ)

)2
)
. (20)

A full quadratic query complexity speedup is obtained for p ∈ [1, 2].

We therefore use similar techniques to prove quadratic improvements for kernel policies and actor-critic algorithms,
exploiting variance reduction and smoothness properties.

3.2 Gaussian RKHS policies and Compatible RKHS Actor-Critic

To design rich Gaussian RKHS policies and formulate an effective quantum actor-critic algorithm, we extend the
Compatible RKHS Actor-Critic approach by Lever and Stafford [LS15]. The approach forms Gaussian policies with

10



mean based on a representer formula, which is updated by the policy gradient and the parameters of which are regularly
sparsified. The algorithm uses a kernel-regression based critic instead of the empirical returns in the computation of the
policy gradient. The kernel regression approximator is compatible, i.e. the policy gradient computed using the optimal
function in the kernel regression RKHS is equivalent to the true policy gradient, and using the critic in this way helps to
lower the variance of the policy gradient estimate.

Being based on a representer formula, the policy parametrisation in this approach is data-driven, i.e. based on the
state-action pairs as parameters, which is also referred to as a non-parametric approach. Since the approach assumes
actions and states, policies are parametrised byN policy weights β1, . . . , βN ∈ A andN policy centres c1, . . . , cN ∈ S
for i = 1, . . . , N . The mean µ(s) for given state s ∈ S is defined based on an operator-valued kernel K,

µ(s) =

N∑

i=1

K(ci, s)βi , (21)

which is an action in A. The Gaussian RKHS policy is then defined by the Gaussian distribution with mean µ(s) and
covariance matrix Σ:

π(a|s) = N (µ(s),Σ)

=
1

Z
exp

(
−1

2
(µ(s)− a)⊺Σ−1(µ(s)− a)

)
, (22)

where Z is the normalisation constant. We formulate such policies in a quantum circuit by computing the mean and
covariance classically, and then applying state preparation techniques.

This interpretation allows defining a functional gradient based on the Fréchet derivative, a bounded linear map

Dg|µ : HK → R with lim∥h∥→0
∥g(µ+ h)− g(µ)∥R −Dg|µ(h)

∥h∥HK

= 0. Specifically, their result provides (see

Appendix B)
Dg|µ :h→ (a− µ(s))Σ−1h(s)

= ⟨K(s, ·)Σ−1(a− µ(s)), h(·)⟩
for any operator-valued kernel K, such that the gradient is given by

∇µ log(π(a|s)) = K(s, ·)Σ−1(a− µ(s)) . (23)
This being a functional gradient with respect to µ, the ∇µ log(π(a|s)) ∈ HK and is of the same form as the function
µ(·) in Eq. 21. In practice, the gradient can be formulated in terms of an N ×A parameter matrix, and for our purposes
we make use of a vectorised form of the analytical gradient w.r.t the policy weights β (see Appendix C).

To maintain a sparse set of centres and weights, Lever and Stafford propose to periodically apply vector-valued kernel
matching pursuit [MZ93] in which feature vectors {K(ci, ·)}Ni=1 and weights {βi}Ni=1 are stored based on the error of
its corresponding function approximator µ̂. Using the technique, one greedily and incrementally adds the next centre ci
and weight βi, when added, yields the lowest mean squared error (MSE):

min
c,β

∑

si∈I⊂S
||µ(si)− (µ̂+ βK(c, : ))(si)||22 , (24)

where basis functions K(c, : ) are stored from observed states c ∈ S and policy weights β ∈ A are stored based on
observed actions. The resulting estimator approximates the original policy µ to reduce the number of representers,
N . A lower N is obtained when meeting a stopping criterion, e.g. based on an MSE improvement below a threshold
ϵµ. Adaptively restricting the number of basis functions using such a threshold allows tailoring the complexity of
the function approximator µ̂ to the complexity of µ. Since our mean policy function µ is computed classically, we
straightforwardly apply this technique to our setting. Note that due to updating µ← µ̂ after sparsification, we only use
the notation µ̂ in the context of this approximation process.

With the above policies in mind, we seek to compute the policy gradient within a quantum circuit. The algorithm defines
the policy gradient for a Gaussian policy based on the critic Q̂ as

∇µV (d0) =

∫
ν(z)Q(z)∇µ log(πµ(s, a))dz

=

∫
ν(z)Q(z)K(s, ·)Σ−1(a− µ(s))dz

≈
∫
ν(z)Q̂(z)K(s, ·)Σ−1(a− µ(s))dz (25)
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where z ∈ S × A, Q̂ : S × A → R is the critic, and the occupancy measure ν is defined based on Pt (see Eq. 7)
according to

ν(z) :=

T−1∑

t=0

γtPt(z|π) , (26)

which sums the discounted probability at each time based on the policy parameterised by µ and Σ. The integral is then
approximated based on samples from a related occupancy distribution (1− γ)ν(s, a). To approximate this integral, we
perform analytical gradient estimation (as explained in Section 3.1.3). Specifically, we will construct a binary oracle
UX,S×A (an instance of Definition 3.6), which computes the state-action occupancy measure as a superposition within a
quantum circuit and which calls OX,S×A based on Q̂(z)K(s, ·)Σ−1(a− µ(s)). This yields a random variable X(s, a),
the expectation of which is estimated with Multivariate Monte Carlo, finally yielding the policy gradient estimate
X̄ ≈ ∇µV (d0).

In this context, the critic Q̂(z) is parametrised classicaly by µ and Σ to form a compatible function approximator of
Q(s, a) using a kernel regression technique (e.g. kernel matching pursuit [VB02]) with the compatible kernel

Kµ((s, a), (s
′, a′)) := K(s, s′)(a− µ(s))⊺Σ−1(a′ − µ(s′)) .

This leads to a critic of the form
Q̂(s, a) = ⟨w,∇µ log(πµ(a|s))⟩ , (27)

where w ∈ HK and ∇µ log(πµ(a|s)) = K(s, ·)Σ−1(a− µ(s)) ∈ HK . The objective of the critic is to minimise the
MSE:

Q̂(s, a) = argmin
Q̂∈HKµ

∫
ν̃(z)

1

1− γ
(
Q(z)− Q̂(z))

)2
dz , (28)

where Q(z) = E[R(τ |s, a)]. Similar to the proof of Lever and Stafford [LS15], Appendix D.1 demonstrates that indeed
the critic Q̂ as defined in Eq. 27 is compatible, in the sense that the approximation in Eq. 25 actually yields an exact
equality to∇µV (d0):

∫
ν(z)Q(z)∇µ log(π(a|s))dz =

∫
ν(z)Q̂(z)∇µ log(π(a|s))dz . (29)

The Compatible RKHS Actor-Critic implementation can be interpreted as a natural policy gradient algorithm, which
comes with the benefit of being robust to choices of the coordinates by taking into account the curvature of the manifold
that they parametrise. We give a proof of the natural gradient interpretation in Appendix D.2 with reasoning based on a
related proof by Kakade [Kak02].

3.3 Softmax RKHS policy

A second kernel-based policy of interest is the softmax formulation of Bagnell and Schneider (2003) [BS03], which
was proposed for REINFORCE. It is formulated as

π(a|s) = 1

Z
eT f(s,a) (30)

where Z =
∑
a∈A e

T f(s,a), T > 0 is the temperature parameter, f : S ×A → R is a state-action dependent function
in RKHS according to

f(s, a) =

N∑

i=1

βiκ((si, ai), (s, a)) , (31)

for βi ∈ R, Z =
∑
a e

T f(s,a), and real-valued kernel κ : S ×A → R. That is, now the policy centres are state-action
pairs and the policy weights are scalars. We will use this form as a warm-up example, where we straightforwardly apply
the analytical gradient estimation technique from Jerbi at al. [JCOD23].

3.4 Convergence rate of kernel ridge regression

As already seen in Section 3.2, function approximation using kernel regression is a key component of Compatible
RKHS Actor-Critic. For some classes of kernels, optimal convergence rates can be demonstrated for kernel regression
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methods, and for kernel ridge regression in particular. Kernel ridge regression seeks to estimate a function f : X → Y
by optimising the objective

f̂ = argmin
g∈HK

1

n

n∑

i=1

(yi − g(xi))2 + λn ∥g∥2HK
,

where yi ∈ Y and g(xi) =
∑N
j=1 βjκ(xi, xj) ∈ Y are the target output and the predicted output, respectively, and

{xj}Nj=1 ⊂ X . Its optimal coefficients are given by β = (K + nλnIn)−1Y , where K is the Gram matrix and
Y = (y1, . . . , yn)

⊺.

Now we turn to reviewing useful results about kernel regression that can be used to assess the convergence rate of the
critic. We will denote X as the input space and f : X → Y as a function in the RKHS, where for our purposes X = S
or S ×A and Y = R.

First we provide the definition of a Sobolev space and quasi-uniform sequences, which are the two assumptions required
for the convergence rate proof.
Definition 3.7. Sobolev space. A Sobolev space H l(X ) with smoothness degree l is a Hilbert space defined by

H l(X ) = {f ∈ L2(X ) : ∂αf ∈ L2(X ) for |α| ≤ l} ,
where α is a multi-index and ∂αf = ∂n

∂α1α2...αn
f . The RKHS spanned by the Matérn kernel in Eq. 2.9 of [TWJ20] is an

example Sobolev space.
Definition 3.8. Quasi-uniform sequence (Definition 2.5 in [TWJ20] and Example 3.2 in [WJ22]). A sequence
x1, . . . , xn is quasi-uniform if there exists a universal constant U > 0 such that for all n > 0

hn/qn ≤ U ,
where hn = maxx∈X mini∈[n] ∥x− xi∥2 is the fill distance and qn = mini,j∈[n] ∥xi − xj∥2 is the separation distance.

With these definitions in place, we now turn to reviewing an existing result on L2 norm convergence rates, which we
will use to assess the number of samples needed for obtaining ϵ-precise critic functions.
Lemma 3.4. Convergence rates for kernel ridge regression (Theorem 5.3 and 5.4 in [WJ22]). Let f ∈ H l(X ) be
a function in a Sobolev space over X , a convex and compact subset of Rd, and let l > d/2. Moreover, let the input
samples x1, . . . , xn be quasi-uniform in X and let yi = f(xi) + ei be noisy output samples, where the random errors
(ei) are sub-Gaussian. Define the kernel ridge regression estimator

f̂ = argmin
g

1

n

n∑

i=1

(yi − g(xi))2 + λn ∥g∥2HK
,

where λn ≍ n−
2l̂

2l+d . Moreover, let l̂ ≥ l/2 be the smoothing factor in the RKHS of the estimator, Hκ, where
κ : X ×X → R is a kernel that is subject to algebraic decay conditions (see C2 and C3 [WJ22]; e.g. a Matérn kernel).
Then the L2 error converges in probability according to

∥∥∥f̂ − f
∥∥∥
L2

= OP
(
n−

l
2l+d

)
. (32)

4 Quantum kernel policies

With the aim of designing representer theorem based policies, we now design QKPs based on two types of PQCs. A
first class of circuits, further called Representer PQCs, implements the representer formula coherently within the circuit,
in the sense that the expectation can be written as a representer formula for a particular scalar-valued kernel κ. Circuits
in this class are PQCs which are parametrised in a quantum sense (i.e. directly though rotation angles in the circuit),
and a subset of these are suitable for numerical optimisation without any policy estimation while others are proposed
for analytical gradient based optimisation. A second class of circuits, called Gaussian quantum kernel policies, prepares
a Gaussian wave function based on classically parametrised mean and covariance functions. Circuits in this class are
proposed for analytical gradient based optimisation.

4.1 Representer PQCs

We first define the Representer PQC condition, which is a condition on the quantum circuit which states that its
expectation implements a representer formula for a particular kernel.
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Definition 4.1. Let κ : X × X → R be a kernel. A quantum circuit satisfies the Representer PQC condition for kernel
κ with respect to the output space Y if for any θ ∈ Θ, there exists a set of centres {ci}Ni=1 ⊂ X and some set of weights
{βi}Ni=1 ⊂ Y such that

⟨P ⟩x,β =

N∑

i=1

βiκ(x, ci) (33)

for any x ∈ X .

To explain Representer PQCs, we first note that in supervised learning, implementing representer formulas for quantum
circuits has traditionally been done by defining a measurement operator H =

∑N
i=1 wiρ(ci) in terms of kernel

expansions in the data [Sch21]:

⟨P ⟩s,w = ⟨ϕ(s)|H|ϕ(s)⟩ = Tr

((
N∑

i=1

wiρ(ci)

)
ρ(s)

)
, (34)

where wi ∈ R and ci, x ∈ X for some input space X , and outputs are real values.

To represent vector-valued actions, one option is to define separate measurements for each centre, i.e.

⟨P ⟩s,β =

N∑

i=1

βi⟨ϕ(s)|ρ(ci)|ϕ(s)⟩ , (35)

where βi ∈ A for all i = 1, . . . , N .

Using Eq. 34 or Eq. 35 has several limitations for our purposes. First, to make use of the expressiveness afforded by the
weight parameter w ∈ RN , a state preparation algorithm must be applied before its use in the policy evaluation oracle
Π. Eq. 35 is particularly problematic as it requires N distinct inner product estimations before the state preparation.
Second, the stochasticity of such circuits is more challenging to control without the use of any rotation angles inside
the circuit. Third, these circuits are limited to quantum kernels, and we seek to form an approach which also allows
classical kernels. We will specifically refer to Eq. 34–35 as non-coherent Representer PQCs as opposed to coherent
Representer PQCs that we will introduce.

Kronecker Representer PQC. To demonstrate a coherent Representer PQC, we formulate a simple proof-of-concept
based on the Kronecker delta kernel κ(s, s′) = δs,s′ . Due to simply computing equality in the computational basis, the
kernel can be implemented as multi-controlled gates RY gates as shown in Fig. 1a. Since there is no overlap between
states in the Kronecker delta, one ideally sets N = |S| as in in Fig. 1a; this allows each eigenstate its won action
distribution. Since the circuit controls directly on unique eigenstates, the Kronecker Representer PQC can be written as
the policy evaluation oracle

ΠKron
θ |s⟩|0⟩ = |s⟩

N∑

i=1

δs,ci |β′
i⟩ , (36)

where |s⟩ is an eigenstate, θ represents the rotation angles, N is the number of policy centres. The quantum policy
weight of centre i,

|β′
i⟩ =

∑

a∈A
ψi(a)|a⟩ , (37)

has amplitudes defined by

ψi(a) :=

Ak∏

j=1

(−1)qj(a) cos(θj,i/2)1−qj(a) sin(θj,i/2)qj(a) , (38)

where qj(a) indicates the j’th qubit of eigenaction a, and θj,i is the rotation angle for the j’th action qubit and the
i’th centre. The quantum policy weight can be interpreted as a superposition over classical policy weights (i.e. over
eigenactions). As shown in Claim 4.1, evaluating the expectation reveals an associated classical policy weight for the
Kronecker delta, which is given by

βi =
∑

a∈A
ψi(a)

2a , (39)

and the circuit provably satisfies the Representer PQC condition. Note in Eq. 36 that if the rotation angles are π or 0,
the policy becomes deterministic for state s, yielding a particular eigenaction while angles in between yield stochastic
policies, with π/2 yielding a uniform superposition.
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Claim 4.1. Let κ : S × S → R be the Kronecker delta kernel and let A = {−2kx,−2k−1x, . . . , 0, . . . , 2k−1x}A
be an action space for some scalar x ∈ [0, 1] (e.g. a negative power of 2). Then any policy evaluation oracle ΠKron

θ
constructed according to Eq. 36
a) satisfies the Representer PQC condition for κ w.r.t RA ∩ [−2kx, 2k−1x]A; and
b) approximates the Representer PQC condition for κ w.r.t A with ℓ∞ error of at most x/2.

Proof. Following its definition in Eq. 36, the expectation of the circuit on the action qubits, with measurement in the
computational basis, is given for any state s ∈ S as

⟨P ⟩s,θ =
∑

a∈A
a ⟨Pa⟩s,θ

=
∑

a∈A
a

(
N∑

i=1

δs,ciψi(a)
2

)
(definition in Eq. 36 and Eq. 37)

=
∑

a∈A
a

(
N∑

i=1

κ(s, ci)ψi(a)
2

)
(Kronecker delta kernel)

=

N∑

i=1

κ(s, ci)

(∑

a∈A
ψi(a)

2a

)
(rearranging)

=

N∑

i=1

κ(s, ci)βi (associated classical policy weight in Eq. 39) .

Since s is arbitrarily chosen and the coefficient ψi(a)2 is independent for each state (due to only factoring in ψi(a)2
when δs,ci = 1), this result matches Eq. 33 for any s ∈ S for the given kernel κ. As last part of the proof, we clarify
the dependency on the output space. For claim a), note that since ψi(a)2 is a squared amplitude for any a ∈ A, it is
a real value in [0, 1], which makes it possible for βi to take any number in RA ∩ [−2kx, 2k−1x]A. For claim b), note
that since actions are evenly spaced, the maximal distance to the closest action in A is given by the midpoint of two
computational basis states; that is, ∥βi − round(βi)∥∞ ≤ x/2 for any i ∈ [N ].

General Inner Product Representer PQC. The concept of the coherent Representer PQC can be generalised to other
kernels by using the approach of Markov et al. [MSRG22] to prepare general inner products in the amplitude of |0⟩ of
an auxiliary register. With nf being the number of qubits of the feature space, the inner product between two feature
maps can be implemented using two operators A and B as

|φA⟩ = A|0⟩ =
2nf −1∑

i=0

cA(i)|i⟩

|φB⟩ = B|0⟩ =
2nf −1∑

i=0

cB(i)|i⟩

B†A|0⟩ = ⟨φA|φB⟩|0⟩+
2nf −1∑

i=1

cG(i)|i⟩ , (40)

where cA(i), cB(i) ∈ C are the amplitudes for all |i⟩, and since only the |0⟩ is associated with amplitude of interest, the
amplitudes cG(:) are considered as garbage.

To form such a PQC, which we call a General Inner Product Representer PQC, a subcircuit is formed for each s ∈ S . In
each such subcircuit, there are three distinct types of registers. First, there are N inner product registers, which compute
the inner products ⟨ϕ(s)|ϕ(ci)⟩ for all i ∈ [N ] by applying the operators A and B1, . . . ,BN . Second, there is one
index register, which applies Hadamard gates to form an equal superposition over log(N) qubits. Each basis state in the
index register is linked to a particular inner product register. Third, the action register performs N distinct controlled
RY gates for each of its Ak action qubits. The control state of the i’th rotation of any of the action qubits is given by
|i− 1⟩ and |0⟩ on the index register and the i’th inner product register, respectively. One such sub-circuit with N = 4
policy centres is shown in Fig. 1b; the different sub-circuits are joined by multi-control (analogous to Fig. 3).
Claim 4.2. Let κ : S × S → R be a kernel defined by κ(s, s′) := |⟨ϕ(s)|ϕ(s′)⟩|2 for some feature-map ϕ : S → Cn.
Then the General Inner Product Representer PQC ΠGIP

θ implementing Eq.40 as ⟨ϕ(s)|ϕ(cj)⟩ for all j ∈ [N ] for each
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|0⟩ : RY (θ1,0) RY (θ1,1) RY (θ1,2) RY (θ1,3)

|0⟩ : RY (θ2,0) RY (θ2,1) RY (θ2,2) RY (θ2,3)

|s[0]⟩ : • • • •
|s[1]⟩ : • • • •

(a) Kronecker delta

|0⟩ : RY (θ1,0) RY (θ1,1) RY (θ1,2) RY (θ1,3)

|0⟩ : RY (θ2,0) RY (θ2,1) RY (θ2,2) RY (θ2,3)

|0⟩ :
H

• • • •
|0⟩ : • • • •
|0⟩ :

B†
1A|0⟩ :

|0⟩ :
B†

2A|0⟩ :
|0⟩ :

B†
3A|0⟩ :

|0⟩ :
B†

4A|0⟩ :

(b) General inner product subcircuit

Figure 1: Implementation of a Representer PQC with two-qubit states and two-qubit actions. A separate rotation angle
is reserved for each action qubit. a) Kronecker delta kernel is implemented such that for each possible eigenstate, a
separate set of rotation angles is applied to the action qubits. b) Subcircuit applied to a particular eigenstate s ∈ S to
generalise the Representer PQC to general kernels based on an inner product operator. Different such subcircuits are
then joined into a common circuit for superposition states using multi-control. Note: for building the quantum policy
evaluation oracle Π|θ⟩|s⟩|0⟩, one should omit the measurements and set up further controlled gates to rotate the angles
controlled on |θ⟩.

eigenstate s ∈ S according to Fig. 1b) is a Representer PQC, satisfying the Representer PQC condition for κ w.r.t A.
The associated classical policy weight of the General Inner Product Representer PQC is given for each j ∈ [N ] by

βj =
1

N

∑

a∈A
ψj(a)

2a . (41)

The proof of this claim is given in Appendix E. It follows a similar argumentation to Claim 4.1 but has more involved
computations.

Below we present a few policy formulations based on Representer PQCs. Based on the distinction between Raw-PQCs
(Definition 3.1) and Softmax-PQCs (Definition 3.2), they vary in their applicability, in terms of coherent computation
within a numerical gradient optimisation versus the need for estimating of the policy and the log-policy gradient within
an analytical gradient optimisation (see e.g. Appendix B of Jerbi et al. [JGMB21] and [SSB23]).

A coherent Representer PQC can be formulated as a special case of the Raw-PQC in Definition 3.1. This makes it
suitable for optimisation with numerical gradient without estimating π or∇θ log(π(a|s)), as the circuit can be computed
coherently when removing the measurements in Fig. 1.

Definition 4.2. Representer Raw-PQC. A policy π is a Representer Raw-PQC if its action probabilities are given by
direct measurements in the computational basis, i.e.

π(a|s) = ⟨ψθ,s|Pa|ψθ,s⟩ , (42)

where Pa is the projection associated to action a such that
∑
a Pa = I, PaPa′ = δa,a′Pa, and |ψθ,s⟩ is the quantum

state prepared for state s and parameter θ by a coherent Representer PQC – which is coherent and satisfies Eq. 33).
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We also formulate two PQCs suitable for softmax policies, which are closely related to the Softmax-PQC in Defini-
tion 3.2. This is suitable for optimisation with analytical gradient as it requires estimation of π and∇θ log(π(a|s)) and
state preparation.
Definition 4.3. Representer Softmax-PQC and Representer Softmax-1-PQC. A policy π is a Representer Softmax-
PQC if its policy probabilities are defined by Eq. 12, with observables defined as

⟨Oa⟩s,θ = ⟨ψϕ,s|
Nw∑

i=1

wa,iHa,i|ψϕ,s⟩ , (43)

where θ = (w, ϕ), wa,i ∈ R, Ha,i is a Hermitian operator, ϕ is the set of rotation angles within the circuit, and
|ψϕ,s⟩ is the quantum state prepared by a Representer PQC (Eq. 33) for state s and parameter ϕ. The Representer
Softmax-1-PQC restricts the Representer Softmax-PQC in Eq. 43 through the choice of parameters and projectors; it
sets Ha,i = Pa,i to be a projection on a subspace indexed by i such that

∑Nw

i=1 Pa,i = I, Pa,iPa,j = δi,jPa,i for all
i = 1, . . . , Nw, and ϕ to be the empty set ∅.

Note that with additional controls on eigenactions |a⟩ for all a ∈ A and an alternative interpretation of the outputs
in terms of f(s, a) rather than an action, a representer formula with kernel of the form K((s, a), (s′, a′)) can be
incorporated within the circuit to optimise the function f in the approach by Bagnell and Schneider [BS03] (see Eq. 31).
Since the function f is one-dimensional, this computation lends itself well to the approach of Eq. 34, where we can
define measurements in terms of quantum feature-maps and interpret X = S × A to design an appropriate circuit.
However, this approach is also a non-coherent one and requires to estimate π and prepare its corresponding wave
function.
Definition 4.4. Representer Softmax-PQC B&S. A policy π is a Representer Softmax-PQC B&S if its policy
probabilities are formed according to

πθ(a|s) =
eT ⟨O⟩s,aθ

∑
(s′,a′)∈S×A e

T ⟨O⟩s,a,θ
, (44)

based on the observable

⟨O⟩s,a,θ = ⟨ϕ((s, a))|H|ϕ((s, a))⟩ , (45)

where ϕ is a quantum feature-map, H =
∑N
i=1 wiρ(ci) is a measurement operator that defines for each i ∈ [N ] a

weight wi ∈ R and Hermitian operator ρ(ci) corresponding to the density matrix of the centre ci.

We note that, while generally Eq. 45 will be simpler to implement, it is also possible (e.g. to use classical kernels) to
replace Eq. 45 with the general inner product Representer PQC and define the observable according to

⟨O⟩s,a,θ = ⟨ψϕ,s,a|
Nw∑

i=1

wiHi|ψϕ,s,a⟩ , (46)

where θ = (w, ϕ), wi ∈ R, Hi is a Hermitian operator, ϕ is the set of rotation angles within the circuit, and |ψϕ,s,a⟩ is
the state prepared conditioned on ϕ, s, and a.

Representer Softmax-PQC B&S has a convenient analytical form for the gradient following Bagnell and Schneider
[BS03] (see Appendix F for a proof of the functional gradient; the vectorised gradient is analogous),

∇θ log(π(a|s)) = T
(
κ((s, a), ·)− Ea′∼π(·|s)κ((s, a′), ·)

)
. (47)

Thereby this formulation avoids the additional computations required to estimate∇θ log(π(a|s)).

4.2 Gaussian quantum kernel policies

The Gaussian quantum kernel policy (Gauss-QKP) is a policy that extends the formulation of Lever and Stafford
[LS15] (see Eq. 22) by formulating it in terms of a quantum wave function. A benefit of this formulation is that gradient
computations for ∇β log(π(a|s)), and even Fisher information computations if needed, are analytically given without
requiring additional estimations.

Upon policy updates, the wave function representing the stochastic policy π needs to be updated. For each state,
one can compute the mean action µ(s) and the covariance matrix, Σ(s), and the resulting Gaussian wave function
within a quantum circuit. One option is to use a general-purpose wave function preparation (a.k.a. state preparation)
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|0⟩ : RY (θ1) • • •
|0⟩ : RY (θ2,0) RY (θ2,1) • •
|0⟩ : RY (θ3,0) RY (θ3,1) RY (θ3,2) RY (θ3,3)

Figure 2: Circuit for the Gaussian quantum kernel policy at a given state s. The policy is parametrised by m := µ(s)

and standard deviation v :=
√
Σ(s), where θi,j represents the rotation angle for the i’th qubit and j represents the

control state. For instance, θ2,0 = 2 cos−1(
√
F (mi/2, vi/2)/F (mi, vi)) corresponds to the angle when the first qubit

is |0⟩ while θ2,1 = 2 cos−1(
√
F ((mi − 1)/2, vi/2)/F (mi, vi)) corresponds to the angle when the first qubit is in

state |1⟩. Note: the measurements are useful for defining the policy statistics but are removed when calling the circuit
coherently for quantum policy evaluation Π (e.g. for the trajectory oracle).

techniques, e.g. [SBM06]. However, more special-purpose techniques for Gaussian wave function preparation, such as
the technique proposed by Kitaev and Webb [KW08], are available. To implement the technique by Kitaev and Webb
for a given state s ∈ S and a single dimension, we use the circuit given in Fig. 2.

First, note that amplitudes for a one-dimensional Gaussian with mean m and standard deviation v can be constructed
based on integers as

c(a) =
1√

F (m, v)
e−

1
2v2 (a−m)2

where F (m, v) =
∑∞
n=−∞ e(n−m)2v2 which is related to the third Jacobi theta function, and which implies

∑

a

c2(a) =
∑

a

1

F (m, v)
e−

1
v2 (a−m)2 = 1 .

The rotation angles for consequent qubits is then given recursively by α = cos−1(
√
F (m/2, v/2)/F (m, v)) as

illustrated in the circuit in Fig. 2.

To extend this to the multi-dimensional Gaussian with diagonal covariance matrix, the state to prepare becomes

|ψµ(s),Σ(s)⟩ = C
∑

a∈A
e−

1
2 ã

⊺Σ(s)−1ã|a⟩

= C
∑

a∈A

A−1∏

i=0

e−
1
2Diã[i]

2 |a⟩

= C

A⊗

i=1

(∑

a∈A
e−

1
2Diã[i]

2 |a[i]⟩
)

(48)

where C2 =
√
detΣπ−A/2, Di = Σ(s)−1

ii and ã = a − µ(s). This can be implemented with a larger circuit where
each of the dimensions is performed independently but completely analogous to Fig. 2.

The Gaussian quantum kernel policy is parametrised classically. That is, the mean µ(s) is computed classically and
then we apply controlled rotations based on s ∈ S to prepare the wave function |ψµ(s),Σ(s)⟩ according to Eq. 48.2 For
state s ∈ S, the observable ⟨Pa⟩s = ⟨ψΣ(s),µ(s)|Pa|ψΣ(s),µ(s)⟩ defines the policy directly according to

π(a|s) = ⟨Pa⟩s , (49)

where Pa is the projection associated to action a such that
∑
a Pa = I, PaPa′ = δa,a′Pa.

To define the oracle Π, which computes actions coherently, one needs to provide controls for all the states, which yield
different µ(s) and potentially different Σ(s), and therefore rotation angles. To this end, we formulate a circuit, shown
in Fig. 3, with sub-circuits such as those in Fig. 2 each of which is controlled upon its respective state.

2Note that there is no need for rounding µ(s) to the computational basis since the µ(s) only appears in the amplitude. In fact, it
may be advantageous to have the mean function in between different eigenactions if it is not yet clear which of the actions is the best.
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Figure 3: In the Gauss QKP, the policy evaluation oracle Π is formed by calling multiple Gaussian wavefunction
sub-circuits similar to that in Fig. 2, each of which is controlled by a unique state. The figure illustrates this for a
one-dimensional, two-qubit state space and a one-dimensional, six-qubit action space.

4.3 The number of policy centres

The number of policy centres, as determined by non-parametric optimisation or a priori choice, determines the
expressiveness of the above-mentioned kernel-based policies. In particular, for the Representer Raw-PQC and the
Gauss-QKP, their mean function µ(s) =

∑
a∈A a ⟨Pa⟩s,θ is given by a representer formula. The expressiveness of their

mean function can be characterised based on the Lipschitz constant L as shown in the claim below, which helps to
determine an upper bound on the number of representers (i.e. policy weights and centres).
Claim 4.3. Lipschitz continuity and the number of parameters. Let κ : S × S → R be a real-valued kernel, let
µ(x) :=

∑N
i=1 βiκ(ci, x) ∈ Hκ and let L be a Lipschitz constant such that all pairs x, x′ ∈ X satisfy

∥µ(x)− µ(x′)∥1 ≤ L ∥x− x′∥1 .
Then the number of policy centres N for representing µ is upper bounded by

N = O
(

Lϵk
amaxκmax

)
(50)

where ϵk = 2−k is the finite per-dimension precision, amax ≥ maxa∈A ∥a∥1, and κmax ≥ maxx,x′∈X κ(x, x′). The
same result follows for matrix-valued kernel K(x, x′) := κ(x, x′)M if maxi ∥Mβi∥1 ≤ amax.

The proof of this claim is given in Appendix G.

5 Numerical policy gradient

For numerical gradient estimation, we use the central differencing algorithm by Cornelissen [Cor19] as applied to the
value function in [JCOD23]. After highlighting the query complexity of Representer Raw-PQCs under this estimation
scheme (Section 5.2), we discuss different parametrisations, including the kernel parameters as in Section 7.3 or the
policy weights as in Section 7.2.

The central differencing technique is applied to the value function as a function of the parameters. We first illustrate the
technique based on a one-dimensional parameter. To simplify the notation, we will use the shorthand V (θ) := V (d0; θ).
The technique is based on formulating a Taylor expansion with the Lagrangian formulation of the remainder:

V (θ + h) = V (θ) + V ′(θ)h+ · · ·+ V (k−1)

(k − 1)!
(θ)hk−1 + V (k)(ξ)hk ,

for some ξ ∈ [θ, θ + h] and h > 0. For k = 2, such a formulation leads to first-order central differencing, where

V ′(θ) =
V (θ + h)− V (θ − h)

2h
+
V (k)(ξ1)− V (k)(ξ2)

4
h ,

where ξ1 ∈ [θ, θ+ h] and ξ2 ∈ [θ− h, θ]. For improving the estimates, the formulation extends the Taylor expansion to
higher orders k > 2 and applies function smoothing across several grid points, rather than just θ + h and θ − h. A
so-called central differencing scheme is defined according to

c
(2m)
l =

{
1 for l = 1
(−1)l+1(m!)2

l(m+l)!(m−l)! otherwise

for all l = −m,−m+ 1, . . . ,m− 1,m where m = ⌊k−1
2 ⌋. This leads to the following expression for the derivative

(cf. Eq.74 in [JCOD23])

V ′(θ) =
m∑

l=−m

c
(2m)
l V (θ + lh)

h
︸ ︷︷ ︸

V(2m)(θ,h)

+

m∑

l=−m
c
(2m)
l

V (k)(ξl)

k!
lkhk−1

︸ ︷︷ ︸
Rk

V

, (51)
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where h > 0, ξl ∈ [θ, θ + lh] for all l, V(2m)(θ, h) indicates the estimate based on a smoothed function value, and RkV
is the Lagrangian remainder. The smoothed function value makes the different point estimates linear over the central
differencing scheme such that its average is close to the true derivative.

5.1 Quantum gradient estimation of Gevrey functions

The technique by Cornelissen [Cor19] as applied to gradient of the value function can be summarised as follows:

1. Define R, the edge length of the grid, depending on Gevrey parameters c, d, and σ.
2. Repeat for j = 1, . . . , Nx = O(log(d)):

(a) Formulate a d-dimensional grid G ⊂ [−R/2, R/2]d within a hypercube with edge length R centred
around zero with k evenly spaced grid points per dimension and form a uniform superposition,

|ψ1⟩ =
1√
2kd

∑

θ′∈G
|θ′⟩ , (52)

where k is the number of qubits per dimension.

(b) Apply a phase oracle for V(2m) over G, repeating n = O(d1/pRϵ ) times, such that

OV(2m),G :
1√
2kd

∑

θ′∈G
|θ′⟩ → 1√

2kd

∑

θ′∈G
einV(2m)(θ,θ

′)|θ′⟩ .

Note that this oracle can be constructed from the phase oracle in Definition 3.4 as it follows from the
definition of the smoothed function value that

einV(2m)(θ+θ
′) =

m∏

l=−m
einc

(2m)
l V (θ+lθ′) .

Due to the linear approximation V(2m)(θ, θ
′) ≈ V (θ) +∇θV (θ)θ′, the state after step (b) is

|ψ2⟩ ≈
1√
2kd

∑

θ′∈G
ein(V (θ)+∇θV (θ)θ′)|θ′⟩

=
1√
2kd

∑

θ′∈G
ein∇θV (θ)θ′ |θ′⟩ ,

where the term V (θ) is dropped since QFT is invariant to global phase factors.
(c) Applying an inverse QFT to the state |ψ2⟩ separately for each dimension yields the slope of the phase as

a function of the parameter:

|ψ3⟩ ≈ |round
(
nR

2π
∇θV (θ)

)
⟩ .

(d) Measure and renormalise by factor 2π
nR to obtain Xj = ∇θV (θ).

3. Define X̄ = mean(X1, . . . , XNx
)

5.2 Quadratic improvements for numerical policy gradient

Since quantum gradient estimation of Gevrey functions scales in query complexity with the higher-order gradient of
the policy, we first derive an upper bound on the higher-order gradient of the policy for the Representer Raw-PQC of
Sec. 4.1.
Lemma 5.1. Bound on the higher-order gradient of the policy. Let π be a Representer Raw-PQC as in Def. 4.2
implemented according to Fig. 1b. Then

D = max
p

Dp ,

where

Dp = max
s∈S,α∈[d]p

∑

a∈A
|∂απ(a|s)| ,

is bounded by D ≤ 1.
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Proof. Noting it takes the form of a Raw-PQC, and the fact that the RY gates have ±1 eigenvalues, the remainder of
the proof is analogous to that of Jerbi et al. [JCOD23]. The full proof is given in Appendix H.

We apply the quantum Gevrey estimation as summarised in 5.1. Using the upper bound D, we confirm the quadratic
improvements for numerical policy gradient also hold in the context of Representer Raw-PQCs.

Theorem 5.1. Quadratic improvement for Representer Raw-PQCs under numerical policy gradient. Let π be the
policy formed from a Representer Raw-PQC, let δ > 0 be the upper bound on the failure probability, and let ϵ > 0
be the tolerable ℓ∞ error on the policy gradient. Then with probability at least 1− δ, computing the policy gradient
∇θV (θ) numerically with quantum gradient estimation (Section 5.1) requires

n = Õ
(√

d

(
rmax

ϵ(1− γ)T
2

))
(53)

O(T ) steps of interactions are required. This yields a quadratic improvement over classical estimators under general
classical policy formulations (including but not limited to Gaussian and softmax policies).

Proof. The classical algorithm applies multivariate Monte Carlo to the above central differencing algorithm, independ-
ently for each parameter dimension. The resulting query complexity can be bounded using Theorem 3.4 in [Cor19] and
derivations in Appendix F and G of [JCOD23] (see Appendix I for a summary); that is,

n = Õ
(
d

(
rmax

ϵ(1− γ)DT
2

)2
)
.

For the quantum algorithm, we use quantum Gevrey estimation as summarised in Section 5.1. In particular, we follow
its application according to Theorem 3.1 of Jerbi et al. [JCOD23], where the phase oracle OV is constructed from
a probability oracle OPV as defined in Definition 3.4. To obtain the probability oracle, one rotates the last qubit
proportional to the return, obtaining the state

|θ⟩
∑√

P (τ)|τ⟩|R(τ)⟩
(√

R̃(τ)|0⟩+
√

1− R̃(τ)
)
,

which reduces to

|θ⟩
∑√

Ṽ (d0)|φ0⟩|0⟩+
√
1− Ṽ (d0)|φ1⟩|0⟩ ,

where R̃(τ) = (1−γ)R(τ)
rmax

and Ṽ (d0) = (1−γ)V (d0)
rmax

. Due to the Gevrey value function parameters c = DT 2,
M = 4 rmax

1−γ , and σ = 0 (see Lemma 3.1), we obtain

n = Õ
(
Mcdmax{σ,1/2}

ϵ

)

n = Õ
(√

d

(
rmax

ϵ(1− γ)DT
2

))
.

For Representer Raw-PQCs, note that D ≤ 1 following Lemma 5.1. Therefore, the factor D vanishes in the query
complexity, yielding Eq. 53. Since the classical policy was arbitrarily chosen, this represents a quadratic query
complexity speedup as claimed.

While the optimisation scheme comes with comparable quadratic improvement, a reduction in the number of parameters
is further possible if the optimal deterministic policy µ∗ is a Lipschitz continuous function.

6 Analytical policy gradient

As a second class of techniques, we use analytical policy gradient techniques based on quantum multivariate Monte
Carlo [CHJ22]. The main policies analysed in this section are the Representer-Softmax-PQCs and Gauss-QKPs.

We first summarise how to use quantum multivariate Monte Carlo algorithm for computing the policy gradient before
moving on to specific analytic quantum policy gradient algorithms.
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As a warm-up example, we consider REINFORCE [JCOD23, PS08],

∇θV (d0) = E

[
T−1∑

t=0

∇θ log(π(at|st))
T−1∑

t′=0

γt
′
rt′

]
, (54)

where we show two classes of QKPs that yield quadratic improvements over any classical policy, thereby extending
Lemma 3.3.

Following this example, we will prove the query complexity of two quantum actor-critic algorithms, which have oracles
closely related to occupancy measures and which have different policy gradient updates.

6.1 Quantum multivariate Monte Carlo

The quantum multivariate Monte Carlo technique [CHJ22] generalises univariate techniques [Mon17] to multiple
dimensions and the multivariate technique by van Apeldoorn [vA21] to compute the expected value over vectors
depending on a random variable rather than over mutually exclusive unit vectors. The technique requires a binary oracle
for X , which we denote UX,Ω (see Definition 3.6). The technique allows to estimate the expectation E[X] based on
sampled trajectories, yielding an ϵ-precise policy gradient. The basic algorithm, called QBounded (Theorem 3.3 in
[CHJ22]), works under the condition of a bounded ℓ2 norm of E[∥X∥2] ≤ B. It is the same algorithm as was used in
the analysis of Jerbi et al. (Theorem‘4.1 in[JCOD23]) and can be summarised for our purposes in the following steps:

1. Define a grid G = { jm − 1
2 + 1

2m : j ∈ {0, . . . ,m− 1} ⊂ (−1/2, 1/2)d, where m = 2⌈log(
8πn

αB log(d/δ)
)⌉ is the

number of grid points per dimension and d is the dimension ofX . The grid represents vectors x ∈ G to be used
within the directional mean ⟨x,E[X]⟩, where for example E[X] = E

[∑T−1
t=0 ∇β log(π(at|st))

∑T−1
t′=0 γ

t′rt′
]

for traditional REINFORCE.
2. For j = 1, . . . , Nx = O(log(d/δ)):

(a) Compute a uniform superposition over the grid:

|ψ1⟩ =
1

md/2

∑

x∈G
|x⟩ . (55)

(b) Compute the truncated directional mean oracle: within Õ
(
m
√
B log2(1/ϵ)

)
queries to UX,Ω, a state

|ψ2⟩ is formed such that
∥∥∥|ψ2(x)⟩ − eimE[[[ζ⟨x,X⟩]]10]|0⟩

∥∥∥
2
≤ ϵ

for some desirable ϵ > 0 for a fraction at least 1−ζ/2 of grid points x ∈ G, where ζ = 1√
log(400πnd)

. The

technique is based on first computing a probability oracle for [[ζ⟨x,X⟩]]10 by using controlled rotations,
which encodes the directional mean for most values of x ∈ G, resulting in an amplitude that is close to
the directional mean. Converting to a phase oracle then yields the desired state.

(c) Apply inverse quantum Fourier transform (QFT†
G ⊗ I)|ψ2⟩, where

QFTG : |x⟩ → 1

md/2

∑

y∈G
e2iπm⟨x,y⟩|y⟩

resulting in the state |yj⟩.
(d) Measure yj and renormalise as Xj =

2πyj
ζ .

3. Obtain the estimate X̄ = median(X1, . . . , XNx
).

The QEstimator algorithm (Theorem 3.4 in [CHJ22]) expands on QBounded based on a loop with additional classical
and quantum estimators, each with logarithmic query complexity, thereby allowing improved query complexity as well
as applicability to unbounded variables. The technique roughly goes as follows:

1. Run a classical sub-Gaussian estimator on X (e.g. the polynomial-time estimator of Hopkins based on
semi-definite programming with the sum of squares method [Hop20]) on log(1/δ) T -step trajectories (e.g.
from measurements of UX,Ω) to obtain an estimate X ′ such that P(∥X ′ − E[X]∥2 >

√
Tr(ΣX)) ≤ δ/2 for

failure probability δ > 0, where ΣX is the covariance of X .
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2. For j = 1, . . . , Ny = O(n/ log(d/δ)):
(a) Apply a univariate quantum quantile estimator [Ham21], which is based on sequential amplitude ampli-

fication, to estimate qj , the 2−j’th order quantile of ∥X −X ′∥2 based on O(log(k/δ)/
√
2−j) calls to

UX,Ω.
(b) Define the truncated random variable Yj = 1

qj
[[∥X −X ′∥2]]

qj
qj−1

and apply QBounded, obtaining the
estimate Ȳj .

3. Obtain the estimate X̄ =
∑Ny

j=1 qj Ȳj .

In our query complexity results, we will make use of QBounded for traditional REINFORCE (Section 6.2) and
Deterministic Compatible Quantum RKHS Actor-Critic 6.4 while making use of the QEstimator for (stochastic)
Compatible Quantum RKHS Actor-Critic 6.3. Using QEstimator allows query complexity bounds based on the variance,
a quantity that we will reduce by considering a form of the policy gradient that subtracts a baseline from the critic
prediction, similar to the objective in REINFORCE with baseline and the popular Advantage Actor-Critic (A2C)
[MBM+16].

6.2 Quadratic improvements for REINFORCE

As a warm-up example, we first seek to establish that the quadratic improvements over classical Monte Carlo hold. We
first establish that under some conditions the gradient of the log-policy is bounded by a constant, which will enable a
quadratic improvement in query complexity over any classical policy (not just kernel-based).
Lemma 6.1. ℓ1 bounds on the gradient of the log-policy. Let κ be a scalar-valued kernel such that |κ(s, s′)| ≤ κmax
for all s, s′ ∈ S. The following statements hold for the ℓ1 upper bound on the gradient of the log-policy, B1 ≥
maxs∈S,a∈A ∥∇θ log(π(a|s))∥1.
a) Then for any Gauss-QKP with θ = β, A action dimensions and N representers, with probability 1− δ

B1 ≤ ANZ1− δ
2A
κmax

where Z1−δ is the 1− δ quantile of the standard-normal Gaussian.
b) For any finite-precision Gauss-QKP with θ = β, mean function µ : S → A which is L-Lipschitz such that L ≤ amax

ϵkA
,

and number of representers N = O(Lϵk
√
Σmin

amaxκmax
), it follows that B1 = O(1).

c) Any Representer Softmax-1-PQC with θ = w satisfies B1 = O(1).
d) Any Representer Softmax-PQC B&S satisfies B1 = O(1) provided N = O(κ−1

max).

Proof. a) For any Gauss-QKP, and noting the form of Eq. 23 and applying union bound over the 1− δ
2A quantile yields

the desired result (see Appendix J.1).
b) The finite-precision Gauss-QKP will have bounded support and the variance is a fraction of this interval. Applying the
settings to the norm of Eq. 23 and setting N = O( Lϵ

amaxκmax
) following Claim 4.3 yields B1 = O(1) (see Appendix J.2).

c) The Representer Softmax-1-PQC is an instance of Softmax-1-PQC, which yields B1 = O(1) following Lemma 4.1
in [JCOD23].
d) Following the analytical form in Appendix F, the gradient of the log-policy of Representer Softmax-PQC B&S is
bounded by ∥∥T

(
κ((s, a), : )− Ea′∼π(·|s)κ((s, a′), : )

)∥∥
1
≤ 2max

s,a
∥T κ((s, a), : )∥1

= O(Nκmax)

= O(1) (setting N = O(κ−1
max)) .

Having defined the bounds on the gradient of the log-policy allows for a query complexity analysis of the QKPs. Below
we analyse the above QKPs in the context of REINFORCE with quantum policy gradient.
Theorem 6.1. Quadratic improvements in REINFORCE. Let δ ∈ (0, 1) be the upper bound on the failure probability,
and let ϵ > 0 be an upper bound on the ℓ∞ error of the policy gradient estimate. Moreover, let π be a policy satisfying
the preconditions of Lemma 6.1b) or c). Then with probability at least 1− δ, applying QBounded (algorithm in Theorem
3.3 of [CHJ22] for quantum multivariate Monte Carlo) on a binary oracle for the policy gradient returns an ϵ-correct
estimate X̄ of E[X] = ∇θV (d0) such that

∥∥X̄ − E[X]
∥∥
∞ ≤ ϵ within

n = Õ
(

Trmax

ϵ(1− γ)

)
, (56)
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O(T )-step interactions with the environment. This represents a quadratic improvement compared to any policy
evaluated with classical multivariate Monte Carlo yields query complexity

n = Õ
((

B1Trmax

ϵ(1− γ)

)2
)

(57)

where B1 ≥ ∥∇θ log(π(a|s))∥1.

Proof. We first construct the binary oracle used by Jerbi et al. [JCOD23] which applies UP followed by UR and
finally a simulation of the classical product of

∑T−1
t′=0 γ

t′rt′ and
∑T−1
t=0 ∇θ log(π(at|st)). Defining the oracle in

this manner yields O(T )-step interactions with the environment, as it applies O(T ) calls to policy evaluation (Π),
transition (OP ), and reward (OR) oracles. Note that

∑T−1
t′=0 γ

trt′ = Õ( rmax
1−γ ) due to the effective horizon of the MDP.

Moreover,
∥∥∥
∑T−1
t=0 ∇θ log(π(at|st))

∥∥∥
1

is upper bounded by O(T ) since applying either Lemma 6.1b or c yields

∇θ log(π(at|st)) = O(1).

Now denote X̃ = (1−γ)X
Trmax

. Since an ℓ2 boundB2 ≤ B1 andB1 = O(1), it follows that
∥∥∥X̃
∥∥∥
2
≤ 1 and

∥∥∥E[X̃]
∥∥∥
2
≤ 1 as

required by the QBounded algorithm. Applying QBounded (Theorem 3.3 of [CHJ22]) to X̃ , we obtain an (1−γ)ϵ
Trmax

-precise
estimate of E[X̃] with probability 1− δ within

n = O
(
Trmax log(d/δ)

(1− γ)ϵ

)

= Õ
(

Trmax

(1− γ)ϵ

)
.

O(T )-step interactions with the environment. Therefore, after renormalisation, an ϵ-correct estimate of E[X] is obtained
within the same number of queries.

By contrast, for classical multivariate Monte Carlo (see Appendix A) we note that B∞ ≤ B1 and therefore bounding
X ∈ [−B,B] where B = TB1rmax

1−γ , we require

n = O
((

B1Trmax log(d/δ)

ϵ(1− γ)

)2
)

O(T )-step interactions with the environment.

6.3 Compatible Quantum RKHS Actor-Critic

An alternative to REINFORCE is the Compatible RKHS Actor-Critic algorithm as proposed by Lever and Stafford
[LS15], which reduces the variance of gradient estimates for improved sample efficiency. We briefly review the classical
algorithm to help construct a suitable quantum policy gradient algorithm in Section 6.3.2.

As illustrated in Fig. 4, our framework for implementing actor-critic algorithms is based on a quantum policy gradient
and a classical critic. The algorithm repeats updates to the policy and the critic as follows. It updates the policy by
making use of an occupancy oracle, which samples an analytic expression of the policy gradient according to its
probability under Π and OP . In particular, the algorithm uses the Gauss QKP within the occupancy oracle to sample
the quantity X(s, a) = Q̂(s, a)∇β log(π(a|s)), where Q̂(s, a) is the prediction from the critic and β is the set of
policy weights. The resulting policy gradient is estimated from the expectation over the occupancy oracle via quantum
multivariate Monte Carlo. The critic is updated classically based on separate calls to the traditional trajectory and
return oracles (UP and UR) while setting the number of such classical samples such that there is no increase in query
complexity. Additional periodic and optional steps include cleaning trajectory data stored for replay, sparsifying the
policy, and reducing the scale of the covariance.

6.3.1 The classical algorithm

For classical Gaussian kernel policies, the classical algorithm defines the policy gradient as

∇µV (d0) =

∫
ν(z)Q(z)K(s, ·)Σ−1(a− µ(s))dz (58)
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Apply Quantum multivariate MC on
analytical policy gradient oracle UX

↓
Obtain X̄: ϵ-precise estimate of

E[X] = ∇βV (d0) after n1 queries
↓

Update policy parameters classically β = β + ηX̄
↓

Define deterministic policy µ(s) =∑N
i=1K(s, ci)βi and behaviour policy π.
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↓

Set the number of queries (n1) for the policy gradient.

Periodic and optional updates

Figure 4: Overview of the algorithmic framework for Compatible Quantum RKHS Actor-Critic algorithms 2 and 3.

where z ∈ S × A and ν(z) is the occupancy measure (see Eq. 26). The integral in Eq. 58 can be approximated by
sampling from the distribution formed from (1− γ)ν and computing the quantity based on iid state-action pair samples:

∇µV (d0) ≈
1

1− γ
1

n

n∑

i=0

Q̂(zi)K(si, ·)Σ−1(ai − µ(si)) , (59)

where n is the total number of samples. Since direct knowledge of the occupancy measure is typically unrealistic,
samples can be generated using a subroutine (see Algorithm 1; [AKLM21]).

Lemma 6.2 states that sampling from Algorithm 1 provides unbiased estimates of the occupancy distribution. That is, it
is equivalent to (s, a) ∼ (1− γ)ν. This result provides the basis for kernel regression of the critic (e.g. based on kernel
matching pursuit) as well as the sampling distribution for the policy gradient in Theorem 6.2.
Lemma 6.2. Occupancy distribution lemma. Let γ ∈ [0, 1] be the discount factor and let ν̃(s, a) be a state-action
sampler following Algorithm 1. Then the sampling distribution is equivalent to the occupancy distribution, i.e.
ν̃(s, a) = (1− γ)ν(s, a).

The proof is given in Appendix K.

Algorithm 1 Classical program for occupancy-based sampling in infinite horizon MDPs.

1: procedure CLASSICAL OCCUPANCY-BASED SAMPLING [AKLM21]
2: s0 ∼ d0.
3: a0 ∼ π(·|s0).
4: for t = 0, 1, . . . ,∞ do
5: With probability 1− γ:
6: return (st, at)
7: st+1 ∼ P (·|st, at)
8: at+1 ∼ π(·|st+1)
9: end for

10: end procedure

6.3.2 Compatible Quantum RKHS Actor-Critic

In the quantum-accessible setting, the classical program is modified into suitable quantum oracle for occupancy-based
sampling, which is formed from O(T ) calls to the policy evaluation oracle Π and the transition oracle OP . A quantum
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multivariate Monte Carlo is then used to obtain reliable estimates of the policy gradient. The proposed algorithm, called
Compatible Quantum RKHS Actor-Critic (CQRAC) is shown in Algorithm 2. Note that we now use vector-based
gradients over β rather than functional gradients over µ as this is more convenient in quantum circuits.

At each iteration, the algorithm computes the policy gradient based on n1 queries to a quantum oracle, where n1 is set
according to Theorem 6.2. The quantum oracle is a state-action occupancy, a particular binary oracle UX,S×A defined
in Definition 6.1 which when measured yields the random variable X(s, a) = (Q̂(s, a)− b(s))K(s, ·)Σ−1(a− µ(s))
according to the occupancy measure. The resulting quantity X has the policy gradient as its expectation up to a
constant of (1 − γ), allowing an ϵ-precise estimate of the policy gradient within n1 queries via quantum Monte
Carlo. Following calls to UX,S×A, one applies the trajectory oracle UP and UR n2 times to measure the trajectories
{τ = s0, a0, s1, a1, . . . , s2T−1, a2T−1}n2

i=1 and reward sequences {r0, . . . , r2T−1}n2
i=1, within 2T interactions with the

environment. These classical data are then used to improve the critic by performing classical kernel ridge regression. The
iteration concludes with periodic and optional updates (e.g. kernel matching pursuit, covariance shrinking). After many
such iterations, the policy converges towards a near-optimal policy and the critic correctly estimates the state-action
values of that policy.

Algorithm 2 CQRAC algorithm

1: Input: error tolerance for policy gradient ϵ > 0, learning rate η > 0, regularisation parameter λ ≥ 0, covariance
shrinkage α ∈ (0, 1), discount factor γ ∈ [0, 1), failure probability δ ∈ (0, 1), upper bound on deviation from
baseline ∆Q, upper bound on the 2-norm of the partial derivatives of the log-policy B2, number of policy centres
N , action dimensionality A, parameter dimensionality d = NA, horizon T , number of iterations Nit.

2: Output: near-optimal policy π
3: Define n1 = O

(
∆QB2 log(d/δ)

(1−γ)ϵ

)
(Theorem 6.2a)

4: Z = ∅;Q = ∅.
5: for i = 1, . . . , Nit do
6: ▷ Compute policy gradient (Eq. 59)
7: Define binary oracle UX,S×A : |0⟩ → ∑

s,a

√
ν̃(s, a)|(Q̂(s, a) − b(s))K(s, ·)Σ−1(a − µ(s))⟩ according to

Lemma 6.3 and Fig. 5 (T interactions with environment per call).
8: Perform quantum multivariate Monte Carlo with X = (Q̂(s, a) − b(s))K(s, ·)Σ−1(a − µ(s)) based on n1

shots of UX,S×A, following Theorem 6.2a.
9: Obtain the final estimate X̄ ≈ E[X] = ∇βV (d0) from quantum multivariate Monte Carlo.

10: Compute update: β+= ηX̄; µ =
∑N
i=1 βiK(·, ci).

11: ▷ Update critic classically from measured trajectories
12: Apply n2 = n1 calls to 2T -step implementations of UP and UR, measuring trajectories {τ =

s0, a0, s1, a1, . . . , s2T−1, a2T−1}n2
i=1 and reward sequences {r0, . . . , r2T−1}n2

i=1 (2T interactions with the environ-
ment)

13: Add trajectories Z ← Z ∪ {τ}n2
i=1.

14: Add reward sequences Q ← Q∪ {r0, . . . , r2T−1}n2
i=1.

15: Define an occupancy-based distribution B over z and R(τ |z) by applying Algorithm 1 to randomly selected
trajectories in Z and their associated T -step returns in Q.

16: [NOTE: An alternative is experience replay with bootstrapping (analogous to l.14 of Algorithm 3). ]
17: Classical kernel regression for the critic based on random samples from B:

Q̂(s, a) = ⟨w,K(s, ·)Σ−1(a− µ(s))⟩ = argmin
Q̂∈HKµ

E(z,Q)∼B

[(
Q− Q̂(z)

)2]
+ λ

∥∥∥Q̂
∥∥∥
2

HKµ

.

18: Update baseline (e.g. b(s) =
∑
a∈A π(a|s)Q̂(s, a) ∀s ∈ S).

19: ▷ Optional and periodic updates
20: Remove proportion of old data in Z and Q (periodically).
21: Sparsify policy (periodically, optional): kernel matching pursuit, with tolerance ϵµ.

22: Update number of shots (optional): n1 = O
(

∆QB2 log(d/δ)
(1−γ)ϵ

)
based on new ∆Q and d.

23: Shrink covariance matrix (optional): Σ← Σ ∗ α.
24: end for

26



To further reduce the variance and improve the query complexity, we include a baseline in the policy gradient according
to

∇βV (d0) ≈
1

1− γ
1

n

n∑

i=0

(Q̂(si, ai)− b(si))K(si, ·)Σ−1(ai − µ(si)) , (60)

where the term on the right hand side is the baseline b(s) = V̂π(s) =
∑
a∈A π(a|s)Q̂(s, a) is a possible choice,

in which case Q̂(s, a) − b(s) is the advantage function. The uses of the baseline is common in algorithms such as
REINFORCE with baseline and the popular Advantage Actor-Critic (A2C) [MBM+16]. Including baselines such as
these reduces the variance, since its maximum is reduced, and comes with no effect on the accuracy of the policy
gradient [SB18] due to the derivation

∑
a b(s)∇βπ(a|s) = b(s)∇β

∑
a π(a|s) = 0 (where we note that the gradient

of a constant 1 is 0). Note that the term corresponding to the log-policy gradient is vectorised to yield parameters in
RN×A, according to C, where the N may change after periodic calls to classical kernel matching pursuit.

The critic is trained by classical kernel regression to minimise the MSE on a buffer of previously collected data:

Q̂(s, a) = ⟨w,K(s, ·)Σ−1(a− µ(s))⟩ = argmin
Q̂∈HKµ

E(z,Q)∼B

[(
Q− Q̂(z)

)2]
+ λ

∥∥∥Q̂
∥∥∥
2

HKµ

. (61)

The iid replay of many trajectories collected from past behaviour policies provides more efficient convergence similar
to a supervised learning setting, as it avoids to overfit on data from the new behaviour policy, and again the batch of
training data can be much larger than n2 without affecting the query complexity.

In practice, the occupancy measure is not a distribution. However, a related occupancy distribution can be implemented
by forming a quantum analogue of Algorithm 1 in what we call a state-action occupancy oracle.

Definition 6.1. State-action occupancy oracle. A state-action occupancy oracle UX,S×A is a binary oracle that takes
the form

UX,S×A : |0⟩ →
∑

(s,a)∈S×A

√
ν̃(s, a)|s⟩|a⟩|X(s, a)⟩ ,

where |s⟩|a⟩ is the occupancy register (representing returned state-action pairs) and |X(s, a)⟩ represents the contribu-
tion to the policy gradient, e.g. X(s, a) = (Q̂(s, a)− b(s))K(s, ·)Σ−1(a− µ(s)) for the Gauss QKP in CQRAC.

Note that implementing the oracle in Definition 6.1 will typically require auxiliary registers (e.g. to encode the
trajectories which terminate in particular state-action pairs). Moreover, we have assumed that Algorithm 1 runs with
T →∞ such that it always returns, and ν̃ is indeed a probability distribution summing to one. For finite T , the classical
algorithm may not always return before time T −1. Considering these above points, we demonstrate the implementation
of the quantum oracle and a suitable correction to yield the expected value over the the occupancy measure ν. The
proof is shown for a state-action occupancy oracle (Definition 6.1) but also applies to a state occupancy oracle (see
Definition 6.2) by removing conditioning on actions.

Lemma 6.3. Occupancy oracle lemma. An occupancy oracle UX,S×A following Definition 6.1 can be computed
within O(T ) calls to OP and Π such that an estimator with E[X̄] = ⟨X⟩ has expectation equal to the analytical
policy gradient after post-processing. The total number of qubits required is O(mT + n) where m is the number of
state-action qubits and n is the number of qubits for the gradient register.

Proof. Fig. 5 shows an example circuit to implement UX,S×A. The full proof is given in Appendix L.

Now we turn to proving the query complexity of CQRAC, and more generally actor-critic algorithms, using QEstimator.
Theorem 6.2 states that shots from UX,S×A can provide a sample-efficient estimate based on the approximation of
Eq. 58 through Eq. 59. Instead of a dependence on the maximal value as in QPG, the actor-critic has a dependence on the
maximal deviation from the baseline b(s). We provide the proofs in a generic way for all policies that can be prepared
with state preparation and have a readily available binary form for∇θ log(π(a|s)) and fit the other preconditions. In
part a), we derive an upper bound on the variance based on the range (e.g. Bp = O(1) for the Gauss-QKP), which
leads to a query complexity that is comparable to QBounded. In part b), we analyse a case where more information on
the variance upper bound is known. This leads to an improvement over the range-based QBounded algorithm since
the standard deviation is only a fraction of the range. For instance, for the Gauss-QKP, the improvement in query
complexity for p = 1 is at least Ω(mini(ui − li)), where [li, ui]

d
i=1 is the support of the finite-precision Gaussian (see

Appendix M).
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Figure 5: The circuit UX,S×A for occupancy-based sampling to estimate the policy gradient within Compatible
Quantum RKHS Actor-Critic. The unitary Uγ |0⟩ = √γ|1⟩ +

√
1− γ|0⟩ is implemented based on multi-controlled

RY (2 sin
−1(γ)) gates. OX denotes another unitary defined such that for any eigenstate s ∈ S and eigenaction a ∈ A,

OX |s, a⟩|0⟩ = |s, a⟩|X(s, a)⟩, where X(s, a) = Q̂(s, a)∇β log(π(a|s)). Other oracles have the meanings as defined
in Section 2.4. The circuit UX,S for DCQRAC is analogous but removes action controlled CNOT-gates and formulates
the OX oracle such that for any eigenstate s ∈ S, OX |s⟩|0⟩ = |s⟩|X(s)⟩, where X(s) = κ(s, ·)∇aQ̂(s, a)|a=µ(s).

Theorem 6.2. Quantum actor critic theorem (CQRAC query complexity). Let δ ∈ (0, 1) be the upper bound on
the failure probability, and let ϵ > 0 be an upper bound on the ℓ∞ error of the policy gradient estimate. Let Π be a
policy evaluation oracle parametrised by θ such that for any eigenstate s ∈ S, Πθ|s⟩|0⟩ =

∑
a∈A

√
πθ(a|s)|s⟩|a⟩.

Let X(s, a) =
(
Q̂(s, a)− b(s)

)
∇θ log(π(a|s)) and define UX,S×A as a binary state-action occupancy oracle for X

based on Definition 6.1 and Lemma 6.3. Moreover, let |Q̂(s, a) − b(s)| ≤ ∆Q for all (s, a) ∈ S × A, where b is a
baseline function. Then it follows that
a) with probability at least 1− δ, QEstimator (algorithm in Theorem 3.4 of [CHJ22] for quantum multivariate Monte
Carlo) returns an ϵ-correct estimate X̄ such that

∥∥X̄ −∇θV (d0)
∥∥
∞ ≤ ϵ within

n = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)
(62)

O(T ) time steps of interactions with the environment, when there is an upper bound Bp ≥ maxs,a ∥∇θ log(π(a|s))∥p
for some p ≥ 1; and
b) let the following assumptions hold for all gradient dimensions i = 1, . . . , d: first, let Varν̃′ [∂i log(π(a|s))] ≤
σ∂(i)

2 where ν̃′ is the occupancy distribution before correction with γTX(0,0); second, let Covν̃′((Q̂(s, a) −
b(s))2, ∂i log(π(a|s))2) ≤ cVarν̃′(Q̂(s, a) − b(s))Varν̃′(∂i log(π(a|s))) for some c > 0; third, let
Varν̃′(∂i log(π(a|s)))) ≥ Eν̃′ [∂i log(π(a|s))]2; finally, let b(s) =

∑
a∈A π(a|s)Q̂(s, a). Under these conditions,

QEstimator returns an ϵ-correct estimate within

n = Õ
(
dξ(p)σQσ∇p

(1− γ)ϵ

)
(63)

O(T ) time steps of interactions with the environment, also with probability at least 1− δ, where σ∇p
= ∥σ∂(:)∥p and

σ2
Q ≥ Varν̃′(Q̂(s, a)− b(s)).

Proof. We apply QEstimator (see start of this section) to UX,S×A and the result follows from Theorem 3.4 of [CHJ22]
after upper bound derivations. The full proof is given in Appendix N.
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We remark further on the assumptions in part b), which are mainly there to demonstrate that a significant improvement
over QBounded is possible.3 The first assumption, that of bounded variance of partial derivatives, is straightforward for
smooth functions such as Gaussians. The second assumption states that squared deviations of values from their baseline
do not have a strong positive covariance with the squared log-policy partial derivative. This is true when the mode of
the policy does not correspond to the average Q-value; for instance, when the Q-distributions are skewed, the average
Q-value (i.e. the baseline) does not correspond to a Gaussian policy’s mode. The third assumption is true for Gaussians
due to their peaked and symmetric nature; if the action chosen is frequently the same, it is the mode of the log-probability
and it has expectation of the partial derivative near zero such that E[∂i log(π(a|s))2] ≥ 2E[∂i log(π(a|s))]2. The last
assumption of the b(s) =

∑
a∈A π(a|s)Q̂(s, a) is in general a recommended setting used in advantage-based algorithms.

More generally, it is worth pointing out that σ2
Q ≥ 1

4

(
maxs,a Q̂(s, a)− b(s)− (mins′,a′ Q̂(s′, a′)− b(s′))

)2
provides

a trivial upper bound via Popoviciu’s inequality, but that generally more tight bounds can be available.

As shown in the corollary below, Theorem 6.2a implies a quadratic query complexity speedup compared to its classical
counterpart for ∆Q ≥ 1. Such cut-off points are standard in big O notation to represent the asymptotic worst case, and
indeed one may typically select x → ∞ for terms in the enumerator and x → 0 for terms in the denominator. The
∆Q ≥ 1 case includes many settings where T →∞, and |rmax| → ∞ but more generally settings where one action has
a larger than 1 value benefit compared to others.

Corollary 6.1. Quadratic query complexity speedup over classical sub-Gaussian estimator. For any ∆Q ≥ 1, any
p ≥ 1, upper bound Bp ≥ maxs,a ∥∇θ log(π(a|s))∥p, and covariance matrix ΣX with operator norm (i.e. maximal
eigenvalue) ∥ΣX∥, Eq. 62 provides a quadratic query complexity speedup in ℓ∞ error compared to a comparable
classical sub-Gaussian estimator, which yields

n = Õ
(
d2ξ(p)∆2

QB
2
p + ∥ΣX∥

(1− γ)2ϵ2

)
. (64)

Similarly, under the conditions of Theorem 6.2b), Eq. 63 provides a quadratic query complexity speedup since the
classical sub-Gaussian estimator yields

n = Õ
(
d2ξ(p)σ2

Qσ
2
∇p

+ ∥ΣX∥
(1− γ)2ϵ2

)
. (65)

The proof is given in Appendix O.

Since training the critic requires additional samples, below we analyse the total query complexity of CQRAC and
compare it to the classical case. A first analysis uses a simple tabular average and disregards the role of replaying data
from the buffer. We focus on part a) of Theorem 6.2 but note that part b) is completely analogous.

Corollary 6.2. Total query complexity for CQRAC with a tabular averaging critic. Suppose the preconditions
in Lemma 3.4 and Theorem 6.2a). Let δ > 0 be the upper bound on the total failure probability (combining
critic and policy gradient bounds) and let ϵ > 0 be the upper bound on the ℓ∞ error on the policy gradient. Let
Q(s, a) ∈ [−Vmax, Vmax] and Q̂(s, a) be the state-action value and the prediction of the critic, respectively, for any

state-action pair (s, a) ∈ S ×A. Moreover, let ∆Q ≥ 1. Let ϵ′ ≥
√

(1−γ)ϵ
dξ(p)T∆QBp

Vmax be a tolerable upper bound on

the critic error, i.e. ϵ′ ≥ maxs,a |Q̂(s, a)−Q(s, a)|. Then the total query complexity for CQRAC, combining queries
for the policy gradient and the critic, is given by the same expression as in Eq. 62,

n = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)

O(T ) time steps of environment interaction, while the total query complexity for (classical) Compatible RKHS Actor-
Critic is given by the same expression as in Eq. 64,

n = Õ
(
d2ξ(p)∆2

QB
2
p ∥ΣX∥

(1− γ)2ϵ2

)

O(T ) time steps of environment interaction. Therefore, a quadratic improvement holds for any p ≥ 1.

3Note that we do not need assumption b) to hold throughout the algorithm since we can simply benefit from a reduced policy
gradient error in some instances if we set the number of samples according to a).
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The proof is given in Appendix P.1.

We now turn to analysing the total query complexity in the case where the critic is based on kernel ridge regression,
focusing on the L2 bound which is more common in the function approximation setting. The corollary imposes a
requirement on the tolerable error such that the number of samples is limited compared to the number of samples for
the policy gradient estimation.
Corollary 6.3. Total query complexity of CQRAC with a kernel ridge regression critic. Suppose the preconditions in
Lemma 3.4 and Theorem 6.2a). Moreover, let δ > 0 be the upper bound on the total failure probability (combining
critic and policy gradient bounds) and let ϵ > 0 be the upper bound on the ℓ∞ error on the policy gradient. Moreover,

let ∆Q ≥ 1. Further, let ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)∆QBp

)1/4
be a tolerable upper bound on the L2 critic error such that

ϵ′ ≥
∥∥∥Q̂−Q

∥∥∥
L2

, let m be the number of samples to estimate the critic, and let n2 = m
2T denote the number of queries

to the trajectory oracle. Then the total query complexity for CQRAC, combining queries for the policy gradient and the
critic, is given by the same expression as in Eq. 62,

n = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)

while the total query complexity for (classical) Compatible RKHS Actor-Critic is given by the same expression as in
Eq. 64,

n = Õ
(
d2ξ(p)∆2

QB
2
p + ∥ΣX∥

(1− γ)2ϵ2

)
.

Therefore, a quadratic improvement holds for any p ≥ 1.

The proof is given in Appendix P.2.

6.4 Deterministic Compatible Quantum RKHS Actor-Critic

When seeking to learn the optimal deterministic policy, µ∗, from samples of a behaviour policy, π, it is also possible to
design an algorithm which uses a deterministic policy gradient to directly descend in a deterministic policy µ, regardless
of the form of the behaviour policy π. In this context, we analyse an off-policy actor-critic based on deterministic policy
gradient algorithms [SLH+14], where we define µ as a deterministic policy with the form of Eq. 21. The algorithm
further applies experience replay, leading to a deep deterministic policy gradient (DDPG) [LHP+16] implementation.
The algorithm is again implemented according to the framework in Fig. 4, making use of quantum policy gradient and a
classical critic.

The algorithm, which we call Deterministic Compatible Quantum RKHS Actor-Critic (DCQRAC; Algorithm 3), repeats
iterations which are summarised as follows. At each iteration, the algorithm computes the policy gradient based on n1
queries to a quantum oracle, where n1 is set according to Theorem 6.3. The quantum oracle is a binary oracle UX,S
(see Definition 6.2) which when measured yields the random variable X = ∇aQ̂(sh, a)|a=µ(s)K(s, ·) according to the
state-occupancy distribution. The resulting quantity provides an ϵ-precise estimate of the policy gradient within n1
queries via quantum multivariate Monte Carlo. In addition to calls to UX,S , the algorithm applies n2 = n1 calls to the
trajectory oracle and return oracle, measuring the full trajectory with rewards {s0, a0, r0 . . . , sT−1, aT−1, rT−1}n2

i=1,
with T interactions with environment per call. This is then followed by the estimation of the critic after which the
iteration is concluded with some optional and periodic updates.

The policy gradient is based on a state-occupancy measure νπ(s) :=
∑T
t=0 γ

tPt(s|π). It substitutes the action from the
trajectory by the action µ(s) of the deterministic policy, reformulating the value as

Vµ(d0) =

∫
νπ(s)Qµ(s, µ(s)) , (66)

leading to an off-policy deterministic policy gradient of the form (see e.g. Eq. 15 in [SLH+14])

∇βVµ(d0) :=
∫
νπ(s)∇βµ(s)∇aQµ(s, a)|a=µ(s)ds , (67)

where Qµ is the state-action value of the deterministic policy. The equality omits an approximation error, which is due
to dropping a term which depends on ∇βQµ(s, a); since it is considered negligible [SLH+14], it will be omitted in
further analysis.
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Algorithm 3 DCQRAC algorithm

1: Input: error tolerance for policy gradient ϵ > 0, learning rate η > 0, regularisation parameter λ ≥ 0, discount
factor γ ∈ [0, 1), failure probability δ ∈ (0, 1), upper bounds C2 ≥ maxs,a

∥∥∥∇aQ̂(s, a)|a=µ(s)
∥∥∥
2

and κmax
2 ≥

maxs ∥κ(s, :)∥2, the number of policy centres N , action dimensionality A, parameter dimensionality d = NA,
horizon T , number of iterations Nit.

2: Output: near-optimal policy π.
3: Define n1 = O

(
κmax
2 C2 log(d/δ)

(1−γ)ϵ

)

4: B = ∅.
5: for i = 1, . . . , Nit do
6: ▷ Compute policy gradient (Eq. 68)
7: Define binary oracle UX,S : |0⟩ →∑

s

√
ν(s)|∇aQ̂(s, a)|a=µ(s)K(s, ·)⟩ according to Lemma 6.3 and Fig. 5

(T interactions with environment per call).
8: Perform quantum multivariate Monte Carlo with X(s) = ∇aQ̂(s, a)|a=µ(s)K(s, ·) based on n1 shots of UX,S ,

according to Theorem 6.3.
9: Obtain the final estimate X̄ ≈ E[X] = ∇βV (d0) from quantum multivariate Monte Carlo.

10: Compute update: β+= ηX̄; µ =
∑N
i=1 βiK(·, ci).

11: ▷ Update critic (Eq. 28)
12: Apply n2 = n1 calls to the trajectory oracle and return oracle, measuring the full trajectory with rewards
{s0, a0, r0 . . . , sT−1, aT−1, rT−1}n2

i=1 (T interactions with environment per call).
13: Add trajectory and rewards to buffer B.
14: Define distribution over buffer (e.g. uniform, occupancy-based or prioritised).
15: Classical kernel regression for the critic based on buffer B and bootstrapping with target critic

Q̂(s, µ−(s); v−, w−):

Q̂(s, a) = ⟨w, (a− µ(s))⊺K(s, ·)⟩+ v⊺ϕ(s)

= argmin
Q̂∈HKµ

Es,a,r,s′∼B

[(
Q̂(s, a)− (r + γQ̂(s′, µ−(s′); v−, w−))

)2]
+ λ

∥∥∥Q̂
∥∥∥
2

HKµ

.

16: ▷ Optional and periodic updates
17: Remove proportion of old data in B (periodically).
18: Sparsify policy (periodically, optional): kernel matching pursuit, with tolerance ϵµ.

19: Update number of shots (periodically, optional) n1 = O
(
κmax
2 C2 log(d/δ)

(1−γ)ϵ

)
based on new parameter dimension

and kernel vector upper bound.
20: end for

With critic Q̂ and n samples from the occupancy measure s1, . . . , sn ∼ ν̃π, using a representer formula µ for the
deterministic policy leads to a convenient expression for the deterministic policy gradient

∇θV (d0) ≈
1

1− γ
1

n

n∑

i=0

∇θµ(si)∇aQ̂(si, a)|a=µ(si)

=
1

1− γ
1

n

n∑

i=0

K(si, ·)∇aQ̂(si, a)|a=µ(sn) , (68)

for both the parametric and non-parametric settings (θ = β and θ = µ, respectively).

Following [SLH+14], the compatible critic is now of the form

Q̂(s, a) = ⟨w, (a− µ(s))⊺∇θµ(s)⟩+ v⊺ϕ(s)

= ⟨w, (a− µ(s))⊺K(s, ·)⟩+ v⊺ϕ(s) , (69)

for some df -dimensional feature map ϕ(s) ∈ Rdf (not necessarily equal to the feature encoding of the kernel), and
parameters v ∈ Rdf and w ∈ RN×A; one natural interpretation is of the second term as a state-dependent baseline and
the first term as the advantage of the action in that state.

Since the Q-value in Eq. 69 estimates the value of µ rather than the value of the behaviour policy π, a suitable off-policy
technique should be used. A natural choice is to apply experience replay [MKS+15] with the DDPG style update
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[LHP+16]:

L(Q̂(s, a)) = Es,a,r,s′∼B

[(
r + γQ̂(s′, µ−(s′); v−, w−)− Q̂(s, a)

)2]
, (70)

where transitions are sampled iid from a large buffer B, and µ−,v−, w− are updated infrequently (or with small
increments using exponential averaging). The use of bootstrapping reduces the variance since the estimates only vary in
one time step and make more efficient use of the trajectory (since all time steps can be used). The use of the slowly
moving target network avoids the oscillatory behaviours and general poor convergence associated with frequently
moving target values. Again, the iid replay of many trajectories collected from past behaviour policies provides more
efficient convergence.

Since Algorithm 3 requires a quantum oracle for state occupancy, we formalise this quantity below. Again UX,S is
based on a quantum analogue of Algorithm 1, as shown in Lemma 6.3 and Appendix L, but now one simply removes
the action control qubits for the CX-gates.
Definition 6.2. State occupancy oracle. A state occupancy oracle UX,S is a binary oracle that takes the form

UX,S : |0⟩ →
∑

s∈S

√
ν̃(s)|s⟩|X(s)⟩ ,

where |s⟩ is the occupancy register (representing the returned state) and |X(s)⟩ represents the contribution to the
policy gradient, e.g. X(s) = ∇aQ̂(s, a)|a=µ(s)K(s, ·) for the Gauss QKP and a deterministic policy gradient.

An analogue to Theorem 6.2 is now formulated using a binary oracle that returns after measurement the quantity
κ(s, ·)∇aQ̂(s, a)|a=µ(s). With the critic available, the quantity ∇aQ̂(s, a)|a=µ(s) can be evaluated classically, before
being input to the binary oracle.
Theorem 6.3. Deterministic quantum actor critic theorem (DCQRAC query complexity). Let δ ∈ (0, 1) be the upper
bound on the failure probability and let ϵ > 0 be an upper bound on ℓ∞ error of the policy gradient estimate. Further,
let the critic be such that Cp ≥ maxs,a

∥∥∥∇aQ̂(s, a)|a=µ(s)
∥∥∥
p

for some p ≥ 1.

a) Let µβ be a deterministic policy parametrised by β according to a representer formula (see Eq. 2), let Π be a policy
evaluation oracle parametrised by β such that for any eigenstate s ∈ S, Πβ |s⟩|0⟩ =

∑
a∈A

√
πβ(a|s)|s⟩|a⟩ for some

behaviour policy πβ . Moreover, let κ : S×S → C be a kernel such that itsN -dimensional feature-vector is bounded by
κmax
p ≥ maxs ∥κ(s, :)∥p. Its policy gradient is given by Eq 68. Then with probability at least 1− δ, applying QBounded

(algorithm in Theorem 3.3 of [CHJ22] for quantum multivariate Monte Carlo) on UX,S returns an ϵ-correct estimate
X̄ of E[X] = ∇βV (d0) such that

∥∥X̄ − E[X]
∥∥
∞ ≤ ϵ within

n = Õ
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
(71)

O(T )-step interactions with the environment, where ξ(p) = max{0, 1/2− 1/p}.
b) For a general deterministic policy µθ and policy evaluation oracle Πθ, we obtain an ϵ-correct estimate within

n = Õ
(
dξ(p)EpCp
(1− γ)ϵ

)
, (72)

O(T )-step interactions, where Ep ≥ maxs ∥∇θµθ(s)∥p,max for a norm defined as ∥A∥p,max :=
∑
imaxj |aij |p for

any matrix A.

Proof. We apply QBounded (see start of this section) to a normalised oracle UX̃,S , which is based on the random
variable X̃ = X/Z for some normalisation constant Z to bound the ℓ2 norm. After upper bound derivations, the result
follows from Theorem 3.3 of [CHJ22]. The full proof is given in Appendix Q.

We have used QBounded rather than QEstimator for simplicity, even though in principle using QEstimator can improve
the query complexity further, analogous to Theorem 6.2. The difference between Eq. 71 and Eq. 72 follows from
the deterministic policy being defined in terms of a representer formula, which makes the gradient dependent on the
kernel. The term κmax

p is often O(1); for instance, the Kronecker delta kernel yields κmax
p = 1 since only a single state

has non-zero value. Note that the policy gradient computed for the scalar-valued κ can easily be converted to the
matrix-valued kernel of the form K(s, s′) := κ(s, s′)M after the quantum oracle, since it follows immediately after
matrix multiplication; in the worst case, this would only introduce a small multiplicative constant to the error.

32



Comparing Theorem 6.3a) to Theorem 6.3b) illustrates an advantage of kernel methods, namely that its query complexity
depends on the number of representers rather than the parameter dimensionality. This is summarised in the informal
corollary below.
Corollary 6.4. Advantage of kernel policies. Comparing a kernel policy with N representers and A action dimensions
(and therefore d1 = |β| = NA parameters) to a general policy parametrised by d2 = |θ| > N dimensions, the general
policy has a higher query complexity since a norm is taken over d2 rather than N dimensions.

Theorem 6.3 implies a quadratic query complexity speedup compared to its classical counterpart.
Corollary 6.5. Quadratic query complexity speedup over classical Hoeffding bounds. For p ∈ [1, 2], the results of
Theorem 6.3a) lead to a quadratic query complexity speedup over classical multivariate Monte Carlo. That is, classical
multivariate Monte Carlo yields

n = Õ
(

(κmax
p Cp)

2

(1− γ)2ϵ2

)
. (73)

The proof is given in Appendix R.

Theorem 6.3 implies a few key strategies for reducing the query complexity of DCQRAC, as summarised in the informal
corollary below.

Corollary 6.6. The importance of expressiveness control of µ and regularisation of Q̂. The results of Theorem 6.3a)
imply that controlling N and∇aQ̂ are of critical importance for reducing query complexity. For the former, we propose
the earlier-mentioned kernel matching pursuit technique (see Eq. 24). For the latter, regularisation techniques for Q̂
are recommended.

Algorithm 3 formulates separate samples for the policy gradient and the critic estimation. Comparable to Corollary 6.2,
we compare the total query complexity of the algorithm to a classical variant thereof with a simple tabular critic
(disregarding aspects of experience replay and the function approximator).
Corollary 6.7. Total query complexity of DCQRAC with a tabular averaging critic. Suppose the preconditions
in Theorem 6.3a). let ϵ > 0 be an upper bound on the ℓ∞ error of the policy gradient estimate. Let Q(s, a) ∈
[−Vmax, Vmax] and Q̂(s, a) be the state-action value and the prediction of the critic, respectively, for any state-action

pair (s, a) ∈ S × A. Moreover, let ϵ′ ≥
√

(1−γ)ϵ
Tdξ(p)κmax

p Cp
Vmax be the tolerable upper bound on the critic error, i.e.

ϵ′ ≥ maxs,a |Q̂(s, a) − Q(s, a)|. Then the total query complexity for DCQRAC, combining queries for the policy
gradient and the critic, is given by the same expression as in Eq. 6.3, i.e.

n = Õ
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)

while the total query complexity for (classical) Deterministic Compatible RKHS Actor-Critic is given by the same
expression as in Eq. 73, i.e.

n = Õ
(

(κmax
p Cp)

2

(1− γ)2ϵ2

)
,

yielding a quadratic improvement for any p ∈ [1, 2].

The proof is given in Appendix S.1.

We now turn to providing a similar total query complexity analysis when the critic is based on kernel ridge regression.
Corollary 6.8. Total query complexity of DCQRAC with a kernel ridge regression critic. Suppose the preconditions in
Lemma 3.4 and Theorem 6.3a). let ϵ > 0 be an upper bound on the ℓ∞ error of the policy gradient estimate. Moreover,

let ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)κmax

p Cp

)1/4
be a tolerable upper bound on the ℓ∞ critic error and let n2 = m

2T denote the number
of queries to the trajectory oracle. Then the total query complexity for Compatible Quantum RKHS Actor-Critic,
combining queries for the policy gradient and the critic, is given by the same expression as in Eq. 6.3, i.e.

n = Õ
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
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O(T ) time steps of environment interaction, while the total query complexity for (classical) Deterministic Compatible
RKHS Actor-Critic is given by the same expression as in Eq. 73

n = Õ
(

(κmax
p Cp)

2

(1− γ)2ϵ2

)

O(T ) time steps of environment interaction. Therefore, a quadratic improvement holds for any p ∈ [1, 2].

The proof is given in Appendix S.2.

7 Discussion

We now turn to discussing the applicability of the techniques, further improvements, implementation details, and related
challenges.

7.1 Applicability

Due to the corrupting effects of noise on deep quantum circuits, the formalisms used in many quantum RL algorithms
are unfortunately only meaningful in the post-NISQ era, as also noted by the survey of Meyer et al. [MUP+22]. In
particular, in our case, the environment access (involving many time steps of state, action, and reward oracles) as
well as algorithmic steps (involving phase oracles and inverse QFT computations) together result in a deep quantum
circuit. Moreover, some PQC variants may not be practical for near-term systems for some encodings, e.g. applying an
amplitude encoding on a state with many qubits. However, we remark that our Representer PQCs with a simple kernel
(e.g. the Kronecker delta) can be readily implemented within current architectures. Unfortunately, noise is not the only
concern, since quantum kernel methods are shown to suffer from the problem of exponential concentration [TWCH22],
where due to a variety of factors (expressiveness, noise, entanglement, and global measurements) the number of shots
to accurately estimate the values of the quantum kernel scales exponentially with the number of qubits. However, recent
work proposes quantum Fisher kernels, and in particular the anti-symmetric logarithmic derivative quantum Fisher
kernel (Eq. 14 of [SKY24]), to mitigate the issue. Keeping the above in mind, we believe that our approach of using
coherent policies for RL within quantum-accessible environments is especially applicable to closed-loop quantum
control problems for state preparation and error correction but also Hamiltonian simulation of quantum systems on
quantum devices or classical simulations thereof. By choosing the kernel, its associated representers, and regularisation
techniques, the kernel policies provide smooth and convex optimisation landscapes, expressiveness control, parameter
reduction, analytical gradients, and domain knowledge. These properties in turn also contribute to improved policy
gradient estimates (or reduced query complexity), and therefore more sample-efficient learning.

7.2 Placing the policy centres

While the Lipschitz based bound (Eq. 50) provides a worst case guarantee, it is possible to improve on this bound.
To select the location of policy centres, techniques such as state partitioning techniques (e.g. Voronoi tesselations)
as well as bandwidth tuning, may help to reduce the dependency on the dimensionality. The effectiveness of state
partitioning is illustrated for a classical radial basis function (RBF) kernel: by placing the centres appropriately across
the state space, the state space will be covered in the support of the kernel function, allowing a close approximation
of the optimal deterministic policy. Compare this for instance, to a classical neural network, typically requiring
at least one hidden layer with a size monotonically increasing given the input plus output layers’ sizes, yielding
d = O((S +A)(S) + (S +A)(A)) = O(S2 +A2).

7.3 Optimising the kernel

While the above policy gradient only considers optimising the policy weights within the quantum circuits, optimising
the kernel brings further flexibility to the framework. For instance, an interesting kernel in this respect is the bandwidth
based squared cosine kernel (Eq. 1) where only a single bandwidth factor c > 0 can impact the definition of the kernel
in terms of expressivity, trainability, and generalisation. For instance, the central differencing technique may be applied
to optimising feature-maps, which are then used for inner product computations within the quantum circuit. Optimising
the feature-map in this manner offers the advantage that the change in the circuit is directly related to the quantum
kernel. This helps to implicitly define a new RKHS along with its unique function space and associated regulariser. We
would suggest to apply such updates infrequently (or with a lower learning rate) and in combination with policy weight
updates.
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It is important that these inner products are computed coherently within the circuit which is an implementation
challenge. Hence for this part, we consider the generalisation of the Representer PQC shown in Fig. 1b. Given a suitable
parametrisation of the operators, numerical gradient techniques such as the central differencing we explored, may also
be applicable to optimising the kernel.

7.4 Reducing the number of parameters

While we propose kernel matching pursuit for the analytical gradient, we note that it may also be possible to use
techniques for pruning PQCs in the context of numerical policy gradient algorithms. For instance, using the quantum
Fisher information matrix (QFIM), one can reduce the number of parameters in our PQCs following the approach by
Haug et al. [HBK21]. Noting that the QFIM for a state |ψ(θ)⟩ is given by

Fi,j = 4ℜ [⟨∂iψ(θ)|∂jψ(θ)⟩ − ⟨∂iψ(θ)|ψ(θ)⟩⟨ψ(θ)|∂jψ(θ)⟩] (74)

where ℜ denotes the real part, the expressive capacity of a PQC can be determined by the rank of its QFIM. Though the
QFIM for |ψ(θ)⟩ is a function of θ and hence is a local measure, its rank at random θ captures the global expressive
power. Consequently, the QFIM for |ψ(θ)⟩ can be used to identify and eliminate redundant parameters, a process which
involves calculating the eigenvectors of the QFIM that have zero eigenvalues. An iterative procedure can then be applied
to remove parameters associated with zero components in the eigenvalues until all redundant gates are eliminated (see
Algorithm 1 in [HBK21]).

8 Conclusion

This paper presents optimisation techniques for quantum kernel policies for efficient quantum policy gradient algorithms,
including numerical and analytical gradient computations as well as parametric and non-parametric representations. We
define various kernel-based policies based on representer theorem formalisms, which include the Representer Raw-PQC
as a purely coherent PQC suitable for numerical policy gradient, as well as the Representer Softmax-PQC and the
Gauss-QKP policy suitable for implementing with state preparation and analytical policy gradient. We prove quadratic
improvements of kernel-based policy gradient and actor-critic algorithms over their classical counterparts, across
different formulations of stochastic and deterministic kernel-based policies. Two actor-critic algorithms are proposed
that improve on quantum policy gradient algorithms under favourable conditions, depending on the critic’s deviation
from the baseline prediction for our first implementation and the critic gradient norm for our second implementation.
Our approach results in improved query complexity results by reducing the number of parameters, improving the
optimisation landscape by regularisation, lowering analytic bounds on deterministic gradients which are given by the
kernel, and reducing the variance using baselines. Compared to traditional parametrised quantum circuit policies, the
proposed quantum kernel policies allow convenient analytical forms for the gradient and techniques for expressiveness
control, and are suitable for vector-valued action spaces.
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Appendices
A Classical Multivariate Monte Carlo

For Multivariate Monte Carlo, an estimate X̄ = 1
n

∑n
i=1X

i of the expectation E[X] is obtained by taking n iid samples
of a d-dimensional random variable X . For error tolerance ϵ > 0, an erroneous estimate can be defined by having at
least one dimension with error greater than ϵ, leading to the following upper bound:

P(||X̄ − E[X]||∞ ≥ ϵ) ≤
d∑

i=1

P(|X̄i − E[Xi]| ≥ ϵ) (union bound)

≤ d×max
j

P(|X̄j − E[Xj ]| ≥ ϵ)

≤ 2d exp

(
−2n2ϵ2

4nB2

)
(Hoeffding inequality and Xi ∈ [−B,B] for all i ∈ [d])

= δ .

Therefore the number of samples required for an error at most ϵ and failure rate at most δ is

δ = 2d exp

(
− nϵ

2

2B2

)

n =
2B2

ϵ2
log(2d/δ)

= O
(
B2

ϵ2
log(d/δ)

)

= Õ
(
B2

ϵ2

)
.

B Functional log-policy gradient

The gradient of the log-policy of the Gaussian RKHS policy in 22 with respect to the parameters can be derived
following the proof in Lever and Stafford [LS15].

Define g : HK → R : µ→ log(π(a|s)) and the Fréchet derivative as a bounded linear map Dg|µ : H → R according
to

lim
∥h∥→0

∥g(µ+ h)− g(µ)∥R −Dg|µ(h)
∥h∥HK

= 0 . (75)

We want to find the gradient of g with respect to µ. To do so, we note that the Fréchet derivative relates to the gradient
through the inner product

Dg|µ = ⟨∇g, h(·)⟩ . (76)

In our setting, this gives

Dg|µ :h→ (a− µ(s))Σ−1h(s)

= ⟨K(s, ·)Σ−1(a− µ(s)), h(·)⟩ , (77)

two forms which are equivalent due to the reproducing property.

Expanding g, we get

g(µ+ h) = log

(
1

Z
exp

[
−1

2
(µ(s) + h(s)− a)⊺Σ−1(µ(s) + h(s)− a)

])

= − log(Z)− 1

2
(µ(s) + h(s)− a)⊺Σ−1(µ(s) + h(s)− a) ,
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where Z is the normalisation constant, and

g(µ) = log

(
1

Z
exp

[
1

2
(µ(s)− a)⊺Σ−1(µ(s)− a)

])

= − log(Z)− 1

2
(µ(s)− a)⊺Σ−1(µ(s)− a) .

Note that due to cancelling log(Z) and µ(s)− a terms,

g(µ+ h)− g(µ) = h(s)⊺Σ−1h(s) .

Now evaluate the criterion for Fréchet differentiability:

lim
∥h∥→0

∥g(µ+ h)− g(µ)−Dg|µ(h)∥R
∥h∥HK

= lim
∥h∥→0

∥∥g(µ+ h)− g(µ)− ⟨K(s, ·)Σ−1(a− µ(s)), h(·)⟩
∥∥
R

∥h∥HK

(definition of Dg|µ(h) in Eq. 77)

= lim
∥h∥→0

∥∥−h(s)⊺Σ−1h(s)− 2h(s)⊺Σ−1(µ(s)− a)− 2⟨K(s, ·)Σ−1(a− µ(s)), h(·)⟩
∥∥
R

2 ∥h∥HK

(subtracting g(µ+ h)− g(µ))

= lim
∥h∥→0

∥∥⟨K(s, ·)
(
Σ−1h(s)− 2Σ−1(µ(s)− a)− 2Σ−1(a− µ(s))

)
, h(·)⟩HK

∥∥
R

2 ∥h∥HK

(reproducing property)

= lim
∥h∥→0

⟨K(s, ·)Σ−1h(s), h(·)⟩
2 ∥h∥HK

(cancelling out terms)

≤ lim
∥h∥→0

(Σ−1h(s))⊺K(s, s)Σ−1h(s) ∥h∥HK

2 ∥h∥HK

(Cauchy-Schwarz)

= lim
∥h∥→0

(Σ−1h(s))⊺K(s, s)Σ−1h(s)

= 0 .

Thus the gradient of the log-policy is indeed

∇µ log(π(a|s)) = K(s, ·)Σ−1(a− µ(s)) .

C Vectorised gradient of log-policy

First note that

∇βµ(s) = (∂β1
µ(s), . . . , ∂βd

µ(s)) = (K(s, c1), . . . ,K(s, cN )) .

If the policy centres exhaust the state-space, i.e. {c}Ni=1 = S, then this can be written as K(s, ·). However, this is
clearly not tractable in high-dimensional, continuous state spaces. Instead, we use the notation K(s, :) below to denote
vectorisation across the N policy centres. Therefore

∇β log(π(a|s)) = ∇µ log(π(a|s))∇βµ(s) (chain rule)

= ∇µ
(
log(Ce−

1
2 (a−µ(s))⊺Σ−1(a−µ(s)))

)
K(s, :) (product rule)

=

(
1

2
(a− µ(s))⊺Σ−11+

1

2
1⊺Σ−1 ∗ (a− µ(s))

)
K(s, :)

=
(
(a− µ(s))⊺Σ−1

)
K(s, :) ∈ CA×N .
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D Compatible function approximation and the natural policy gradient

Define a feature-map of the form ϕ : (s, a) 7→ K(s, ·)Σ−1(a− µ(s)) ∈ HK and an associated scalar-valued kernel

Kµ((s, a), (s
′, a′)) = K(s, s′)Σ−1(a− µ(s))Σ−1(a′ − µ(s′)) .

Given that the kernel satisfies Kµ((s, a), (s
′, a′)) = ⟨ϕ(s, a), ϕ(s′, a′)⟩, its associated Hilbert space HKµ has the

reproducing property.

1. There exists a w∗ ∈ HK such that

Q̂(s, a) = ⟨w∗,K(s, ·)Σ−1(a− µ(s))⟩ ∈ HKµ

is a compatible approximator (see Eq. 29).
Suppose that Q̂ is defined as

Q̂ = argmin
Q̂∈HK

L(Q̂) =

∫
ν(z)

(
Q̂(z)−Q(z)

)2
dz ∈ HKµ

.

Due to the reproducing property ofHKµ
, there exists a w∗ in the feature spaceHK such that Q̂πµ

(z) = ⟨w∗, ϕ(z)⟩. It
follows that

∇w∗Q̂πµ
(s, a) = ϕ(s, a) = K(s, ·)Σ−1(a− µ(s)) .

It follows that at a (possibly local) optimum, w∗ satisfies

0 = ∇wL(Q) =

∫
ν(z)(Q(z)− Q̂(s, a))∇wQ̂(s, a)dz

=

∫
ν(z)(Q(z)− Q̂(s, a))K(s, ·)Σ−1(a− µ(s))dz .

From the policy gradient theorem, the above equality, and the analytical gradient for∇µ log(π(a|s)) = K(s, ·)Σ−1(a−
µ(s)) (see Appendix B), it follows that the gradient of the value function allows substituting the state-action value with
the critic prediction:

∇µV (d0) =

∫
ν(z)Q(z)∇µ log(π(a|s))dz

=

∫
ν(z)Q̂(s, a)∇µ log(π(a|s))dz .

2. w∗ is the natural policy gradient, i.e. w∗ = F(µ)−1∇µV (d0), where F(µ) is the Fisher information.

Since ϕ(s, a) = ∇µ log(π(a|s)) and 0 = ∇wL(Q), the Fisher information is given by

F(µ) = E [∇µ log(π(a|s))∇µ log(π(a|s))⊺]

=

∫
ν(z)∇µ log(π(a|s))∇µ log(π(a|s))⊺dz .

Due to the compatible function approximation property of Q̂ and the feature-map of the critic being related to the
gradient of the log-policy, ∇µ log(π(a|s)) = K(s, ·)Σ−1(a− µ(s)), it follows that

∫
ν(s, a)∇µ log(π(a|s))(⟨w∗,K(s, ·)Σ−1(a− µ(s))⟩ −Q(z))dz = 0 (Appendix D.1)

∫
ν(s, a)∇µ log(π(a|s))(⟨w∗,∇µ log(π(a|s))⊺)⟩ −Q(z))dz

and therefore

F(µ)w∗ =

∫
ν(s, a)Q(z)∇µ log(π(a|s))dz = ∇µV (d0) .

In other words, w∗ = F(µ)−1∇µV (d0).
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E GIP Representer PQC proof

We apply the full circuit with random centre indices l ∈ {0, . . . , N − 1} on the first register, actions on the second
register, and inner products on the remaining registers. Note that each subsequent rotation l will be controlled on |j⟩|0⟩
where the second ket is read from the l’th inner product register. Therefore, each rotation l = 0, . . . , N − 1 corresponds
to a mutually exclusive quantum experiment outcome (and a unique quantum policy weight |β′

l⟩; see Eq. 37), and
corresponds to a state of the form

|l⟩|ψGIP(l)⟩ := |l⟩


|β′

l⟩
⊗

j<l

|Jj⟩|J+
l ⟩

N⊗

j=l+1

|Jj⟩+ |0⟩Ak
⊗

j<l

|Jj⟩|J−
l ⟩

N⊗

j=l+1

|Jj⟩


 (78)

where |Jj⟩ is the j’th inner product register, |J+
l ⟩ = ⟨ϕ(s)|ϕ(cl)⟩|0⟩nf and |J−

l ⟩ =
∑2nf −1
i=1 cGl

(i)|i⟩, where cGl
(:) is

the l’th set of garbage amplitudes. Since the zero action does not contribute to the expectation, observe that

∑

a∈A
a⟨ψGIP(l)|Pa|ψGIP(l)⟩ =

∑

a∈A\{0}
a ⟨ψGIP(l)|Pa|ψGIP(l)⟩

=
∑

a∈A\{0}
aψl(a)

2|⟨ϕ(s)|ϕ(cl)⟩|2

The main part to prove now is that the circuit prepares the state 1√
N

∑N
l=1 |l⟩|ψGIP(l)⟩ and to derive the associated

classical policy weight.

Denoting |Jl⟩ = |J+
l ⟩+ |J−

l ⟩ and applying the quantum circuit on eigenstate |s⟩ yields

|0⟩⊗ log(N)|0⟩⊗Ak|0⟩⊗Nnf
H⊗ log(N)

→ 1√
N

N∑

j=1

|j − 1⟩|0⟩⊗Ak|0⟩⊗Nnf

B†
1A...B

†
NA→ 1√

N

N∑

j=1

|j − 1⟩|0⟩⊗Ak
N⊗

l=1

(
⟨ϕ(s)|ϕ(cl)⟩|0⟩⊗nf +

2nf −1∑

i=1

cGl
(i)|i⟩

)

CRY (θ1,0),...,CRY (θAk,0)→ 1√
N


|ψGIP(0)⟩+

N∑

j=2

|j − 1⟩|0⟩⊗Ak
N⊗

l=1

|Jl⟩


 (see Eq. 78)

CRY (θ1,1),...,CRY (θAk,1)→ 1√
N




2∑

j=1

|ψGIP(j − 1)⟩+
N∑

j′=3

|j′ − 1⟩|0⟩Ak
N⊗

l=1

|Jl⟩




...

CRY (θ1,N−1),...,CRY (θAk,N−1)→ 1√
N

N∑

j=1

|ψGIP(j − 1)⟩ = ΠGIP
θ |0⟩⊗ log(N)|0⟩⊗Ak|0⟩⊗Nnf .
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Applying measurement in the computational basis on the action register, the expectation of the circuit on the action
qubits can be written in terms of a representer formula depending on the kernel κ(s, s′) = |⟨ϕ(s)|ϕ(cj)⟩|2. That is,

⟨P ⟩s,θ =
∑

a∈A
a ⟨Pa⟩s,θ

=
1

N

∑

a∈A\{0}
a




N∑

j=1

ψl(a)
2|⟨ϕ(s)|ϕ(cj)⟩|2




=
1

N

∑

a∈A\{0}
a




N∑

j=1

κ(s, cj)ψj(a)
2


 (fidelity kernel)

=

N∑

j=1

κ(s, cj)


 1

N

∑

a∈A\{0}
ψj(a)

2a


 (rearranging)

=
N∑

j=1

κ(s, cj)βj (associated classical policy weight in Eq. 41) .

One may then convert between the real vector space and A with some loss of precision analogous to the proof of
Claim 4.1.

F Analytical policy gradient for softmax RKHS policy

The functional policy gradient of the policy gradient of the softmax RKHS policy in Eq. 30 is given by

∇f log(π(a|s)) = ∇f log(
1

Z
eT f(s,a))

= ∇f
(
log(eT f(s,a))− log(Z)

)

= ∇f
(
T f(s, a)− log(

∫
eT f(s,a

′)da′)

)

= T κ((s, a), ·)−∇f
(∫

eT f(s,a
′)da′

)
/Z

= T κ((s, a), ·)− 1

Z

∫
∇feT f(s,a

′)da′

= T κ((s, a), ·)− 1

Z

∫
eT f(s,a

′)∇fT f(s, a′)da′

= T κ((s, a), ·)− 1

Z

∫
eT f(s,a

′)∇fT f(s, a′)da′

= T κ((s, a), ·)− T
∫
π(a′|s)κ((s, a′), ·)da′

= T κ((s, a), ·)− T Ea′∼π(·|s)[κ((s, a′), ·)]
= T

(
κ((s, a), ·)− Ea′∼π(·|s)[κ((s, a′), ·)]

)
.
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G Lipschitz continuity and the number of parameters

Note that for any real-valued kernel κ : S × S → R, κmax ≥ maxx,x′ κ(x, x′), amax ≥ maxa∈A ∥a∥1, and µ(x) :=∑N
i=1 βiκ(ci, x), we have

∥µ(x)− µ(x′)∥1 =

∥∥∥∥∥
N∑

i=1

βi(κ(ci, x)− κ(ci, x′))
∥∥∥∥∥
1

≤ N max
i
∥βi∥1 max

x,x′,x′′∈S
(κ(x, x′)− κ(x, x′′))

≤ N max
a∈A
∥a∥1 max

x,x′∈S
∥κ(x, x′)∥1 (kernel is positive definite)

≤ Namaxκmax .

Due to the finite per-dimension precision ϵk = 2−k, the ℓ1 distance of any two distinct inputs x ̸= x′ is lower bounded
by ∥x− x′∥1 ≥ ϵk. Therefore, a Lipschitz constant L can be defined as

L ≥ max
x,x′

∥µ(x)− µ(x′)∥1
∥x− x′∥1

≥ Namaxκmax

ϵk
.

This implies

N = O
(

Lϵk
amaxκmax

)
.

To extend the result to the matrix-valued kernel, note that

∥µ(x)− µ(x′)∥1 =

∥∥∥∥∥
N∑

i=1

(κ(ci, x)− κ(ci, x′))Mβi

∥∥∥∥∥
1

≤ N max
i

max
x,x′,x′′∈S

(κ(x, x′)− κ(x, x′′))) ∥Mβi∥1
≤ N max

i
max
x,x′∈S

κ(x, x′) ∥Mβi∥1 (kernel is positive definite)

≤ Nκmaxamax . (definition of κmax and max
i
∥Mβi∥1 ≤ amax.)

Following analogous steps as above, N = O
(

Lϵk
amaxκmax

)
.

H Raw-PQC and bound on D (numerical gradient)

The proof is analogous to Lemma 3.1 of Jerbi et al. [JCOD23], which generalises the parameter shift rule [SBG+19] to
higher-order derivatives using the formulation from Cerezo et al. [CC21]. The approach requires eigenvalues±1, which
is true for the C-RY gates in the Representer Raw-PQCs of Figure 1a–b; this can be seen by constructing analogous
circuits with uncontrolled RY gates (see e.g. [SBM06]).

The gradients of Representer Raw-PQCs are given by the parameter shift rule with one qubit rotations as

∂iπθ(a|s) = ∂i⟨Pa⟩s,θ =
⟨Pa⟩s,θ+π

2 ei
− ⟨Pa⟩s,θ−π

2 ei

2
,

which can be generalised to higher-order derivatives (see Eq. 50 [JCOD23]; Eq. 19 [CC21])

∂απθ(a|s) =
1

2p

∑

ω

cω⟨Pa⟩s,θ+ω ,

where α ∈ [d]p, ω ∈ {0,±π/2,±π,±3π/2}p, and cω ∈ Z are integer (negative or non-negative) coefficients such that∑
ω |cω| = 2p.
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The quantity Dp will be bounded by

Dp = max
s∈S,α∈[d]p

∑

a∈A

∣∣∣∣∣
1

2p

∑

ω

cω⟨Pa⟩s,θ+ω
∣∣∣∣∣

≤ max
s∈S,α∈[d]p

∑

a∈A

1

2p

∑

ω

|cω||⟨Pa⟩s,θ+ω|

= max
s∈S,α∈[d]p

1

2p

∑

ω

|cω|
∑

a∈A
|⟨Pa⟩s,θ+ω|

= 1 ,

where the last line follows from
∑
ω |cω| = 2p and

∑
a Pa = I . Since this result holds for all p ∈ N, it also hold that

D ≤ 1.

I Classical Central Differencing

We briefly summarise the proof of Jerbi et al. [JCOD23].

Recall that the derivative,

V ′(θ) =
m∑

l=−m

c
(2m)
l V (θ + lh)

h
︸ ︷︷ ︸

V(2m)(θ)

+

m∑

l=−m
c
(2m)
l

V (k)(ξl)

k!
lkhk−1

︸ ︷︷ ︸
Rk

V

,

can be decomposed into the k’th order central differencing estimator V(2m)(θ) and the remainder RkV . In the proof
below, we seek to bound the error on both terms, each to ϵ/2.

Let Gk be an upper bound for |V (k)(ξl)| for ξl ∈ [θ −mh, θ +mh]. Following properties of the central differencing
scheme, the remainder RkV is bounded in absolute value by

|RkV | =
∣∣∣

m∑

l=−m

c
(2m)
l V (k)(ξl)

k!
lkhk−1

∣∣∣

≤
∣∣∣

m∑

l=−m
c
(2m)
l lk

∣∣∣Gk
k!
hk−1

≤ 2mkGk
k!
hk−1 . (|

m∑

l=−m
c
(2m)
l lk| ≤ 2mk, Theorem 3.4 [Cor19])

To obtain |RkV |, we need a finite difference

h ≤
(

k!ϵ

4mkGk

) 1
k−1

.

The setting of

h =
2

e

(
ϵ

4Gk

) 1
k

(79)

satisfies this requirement.

Applying classical multivariate Monte Carlo (Appendix A) with a zero’th order bound G0 and precision ϵ, we note
that for each l = −m, . . . ,m, the required precision for V (θ + lh) is given by ϵh

kc
(2m)
l

(such that the errors sum to ϵ).
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Therefore, the query complexity is given by

n = Õ




m∑

l=−m

(
kc

(2m)
l G0

ϵh

)2



= Õ
((

G0k

ϵh

)2 m∑

l=−m
|c(2m)
l |

)

= Õ
((

G0k

ϵh

)2
(
1 + 2

m∑

l=1

1

l

))
(|c(2m)
l | ≤ 1/l, Theorem 3.4 [Cor19])

= Õ
((

G0k

ϵh

)2

(3 + 2 log(m))

)
(upper bound on harmonic numbers) .

Dropping the logarithm and applying Eq. 79, the query complexity is given by

n = Õ



(
G0k

ϵ

(
Gk
ϵ

) 1
k

)2

 . (80)

Following general combinatorial arguments for MDPs (see Lemmas F.2–F.4 in [JCOD23]), the value function as
a function of the parameters satisfies the Gevrey condition with σ = 0, M = 4rmax

1−γ , and c = DT 2 (as claimed in
Lemma 3.1). Therefore, the k’th partial derivative of the value function is bounded by

|∂αV (θ)| ≤ M

2
ck(k!)σ

≤ 2rmax

1− γ (DT
2)k .

for any k ≥ 0. This implies Gk := 2rmax
1−γ (DT

2)k is a suitable upper bound for |V (k)(ξl)|. Defining x = 2rmax
ϵ(1−γ) and

k = log (x), we have

n = Õ



(
G0k

ϵ

(
Gk
ϵ

) 1
k

)2



= Õ
((

xk (x)
1
k

)2)

= Õ
((
x log(x)eDT 2

)2)
(k = log(x), x1/ log(x) = e, and (DT 2)k/k)

= Õ
((
xDT 2

)2)

= Õ
((

rmaxDT
2

ϵ(1− γ)

)2
)

(definition of x)

for a single partial derivative. For the full d-dimensional gradient, classical central differencing therefore obtains a
query complexity of

n = Õ
(
d

(
rmax

ϵ(1− γ)DT
2

)2
)
, (81)

which is indeed a quadratic slowdown compared to Eq. 53.

J Proof of bound B1

J.1 Proof for analytic Gaussian: B1 ≤ ANZ1− δ
2A

Σ
−1/2
min κmax with probability 1− δ

The gradient is defined as

∇β log(π(a|s)) =
(
(a− µ(s))Σ−1

)
κ(s, :) ∈ CA×N ,
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implying that for every j ∈ [A], (a[j]− µ(s)[j])/
√

Σ−1
jj ∈ N (0, 1).

Let Zj = (a[j] − µ(s)[j])/
√
Σjj and define δ > 0. Then by distributing failure probability δ across dimensions

by allocating for each dimension the one-sided failure probability 1− δ
2A , this leads to a two-sided bound based on

comparing the absolute Z-score to the quantile Z1− δ
2A

. That is, the probability of observing any action dimension with
a more extreme Z-score is bounded by

P (∪Aj=1|Zj | > Z1− δ
2A

) ≤
A∑

j=1

P (|Zj | > Z1− δ
2A

) (union bound)

= 2A(1− Φ(Z1− δ
2A

)) (symmetry and definition of cumulative density function)

= δ .

Therefore with probability at least 1− δ, we have

B1 := ||∇β log(π(a|s))||1
= ||

(
(a− µ(s))Σ−1

)
κ(s, :)||1

=
∑

i,j

|ZjΣ−1/2
jj κ(s, ci)|

≤ ANZ1− δ
2A

Σ
−1/2
min κmax ,

where κmax ≥ κ(s, s′) for all s, s′ ∈ S.

J.2 Proof for finite-precision Gauss-QKP: B1 = O(1)

Note that the finite precision Gaussian will have support over some interval [li, ui] and ui − li = O(
√
Σ) for all

i = 1, . . . , A. It follows that

||∇β log(π(a|s))||1 = ||
(
(a− µ(s))Σ−1

)
κ(s, :)||1

≤
∑

i,j

∣∣∣∣
ui − li
Σi,i

κ(s, cj)

∣∣∣∣

≤ O(NAκmax√
Σmin

) (Σmin = min
i

Σii).

= O
(
LϵkA

amax

)
(setting of N =

Lϵk
√
Σmin

amaxκmax
following Lemma 6.1b)

= O (1) . (since L ≤ amax

ϵkA
)

K Unbiased estimator lemma proof

By definition of Algorithm 1,

ν̃(s, a) =

∞∑

t=0

P (algorithm 1 returns (s, a) at step t)

=

∞∑

t=0

(1− γ)γtPt(s, a|π) (definition of Pt in Eq. 7)

= (1− γ)ν(s, a) .
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L Occupancy oracle lemma proof

Implement UX,S×A according to Fig. 5, which requires T − 1 calls to OP , and T calls to Π. To simplify the proof, we
formulate the circuit to first compute the trajectory superposition before doing the controls, which yields an equivalent
final state. The first step of the circuit is to compute Uγ |0⟩ = √γ|1⟩+

√
1− γ|0⟩ independently on discount registers

|ψ0, . . . , ψT−1⟩. Note that

Pt(s′, a′|π) =
∑

τ0:t

P (τ0:t)Pt(s′, a′|τ0:t)

=
∑

τ0:t−1

P (τ0:t−1)P (s
′, a′|τt−1) . (82)

Denote τt as the state-action pair at time t, τj:t as a trajectory from time step j to time step t, ψj:t as the discount
register from time step j to time step t, and

|Jt⟩ =
∑

(s′,a′)∈S×A

∑

τ0:t−1

∑

τt+1:T−1

√
P (τ0:t−1)|τ0:t−1⟩

√
P (s′, a′|τt−1)|s′, a′⟩

√
P (τt+1:T−1)

|τt+1:T−1⟩
√
(1− γ)γt|1⟩⊗t−1|0, ψt+1:T−1⟩|s′, a′⟩|0, . . . , 0⟩ . (83)

With the first register indicating the trajectory superposition, the second register indicating the discount registers, the
third register indicating the occupancy register, and the fourth circuit indicating the gradient register, the circuit develops
as follows:

|0⟩|0, . . . , 0⟩|0,0⟩|0, . . . , 0⟩
→
∑

τ

√
P (τ)|τ⟩|ψ0:ψT−1

⟩|0,0⟩|0, . . . , 0⟩

CX(0,0),...,CX(0,Ak−1)→
∑

(s′,a′)∈S×A

∑

τ1:T−1

√
P (s′, a′|d0, π)|s′, a′⟩

√
P (τ1:T−1)|τ1:T−1⟩

√
(1− γ)|0, ψ1:T−1⟩|s′, a′⟩|0, . . . , 0⟩

+
√
γ
∑

τ

√
P (τ)|τ⟩|1, ψ1:T−1⟩|0,0⟩|0, . . . , 0⟩

= |J0⟩+
√
γ
∑

τ

√
P (τ)|τ⟩|1, ψ1:T−1⟩|0,0⟩|0, . . . , 0⟩ (definition in Eq. 83)

CX(1,0),...,CX(1,Ak−1)→ |J0⟩+
√
γ

( ∑

(s′,a′)∈S×A

∑

τ0

∑

τ2:T−1

√
P (τ0)

√
P (s′, a′|τ0)|τ0⟩|s′, a′⟩

√
P (τ2:T−1)|τ2:T−1⟩

√
(1− γ)|1⟩|0, ψ2:T−1⟩|s′, a′⟩|0, . . . , 0⟩

+
√
γ
∑

τ

√
P (τ)|τ⟩|1, 1, ψ2:T−1⟩|0,0⟩|0, . . . , 0⟩

)

=

1∑

t=0

|Jt⟩+
√
γ2
∑

τ

√
P (τ)|τ⟩|1, 1, ψ2:T−1⟩|0,0⟩|0, . . . , 0⟩

...
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CX(T−1,0),...,CX(T−1,Ak−1)→
T−1∑

t=0

|Jt⟩+
√
γT
∑

τ

√
P (τ)|τ⟩|1⟩⊗T |0,0⟩|0, . . . , 0⟩

=

T−1∑

t=0

∑

(s′,a′)∈S×A

∑

τ0:t−1

∑

τt+1:T−1

√
P (τ0:t−1)|τ0:t−1⟩

√
P (s′, a′|τt−1)|s′, a′⟩

√
P (τt+1:T−1)

|τt+1:T−1⟩
√
(1− γ)γt|1⟩⊗t|0, ψt+1:T−1⟩|s′, a′⟩|0, . . . , 0⟩

+
√
γT
∑

τ

√
P (τ)|τ⟩|1⟩⊗T |0,0⟩|0, . . . , 0⟩

OX→
T−1∑

t=0

∑

(s′,a′)∈S×A

∑

τ0:t−1

∑

τt+1:T−1

√
P (τ0:t−1)|τ0:t−1⟩

√
P (s′, a′|τt−1)|s′, a′⟩

√
P (τt+1:T−1)

|τt+1:T−1⟩
√
(1− γ)γt|1⟩⊗t|0, ψt+1:T−1⟩|s′, a′⟩|X(s′, a′)⟩

+
√
γT
∑

τ

√
P (τ)|τ⟩|1⟩⊗T |0,0⟩|X(0,0)⟩

=
∑

(s′,a′)∈S×A

T−1∑

t=0

(√
Pt(s′, a′|π)|χ1,t(s

′, a′)⟩|s′, a′⟩|χ2,t(s
′, a′)⟩

√
(1− γ)γt|1⟩⊗t|0, ψt+1:T−1⟩|s′, a′⟩|X(s′, a′)⟩

)
(via Eq. 82)

+
√
γT
∑

τ

√
P (τ)|τ⟩|1⟩⊗T |0,0⟩|X(0,0)⟩ ,

where |χ1,t(s
′, a′)⟩ and |χ2,t(s

′, a′)⟩ are (unnormalised) trajectory superpositions of t steps and T − t− 1 steps which
precede and follow, respectively, (s′, a′).

Consequently, the gradient register has expectation

⟨X⟩ =
∑

(s,a)∈S×A

(
T−1∑

t=0

(1− γ)γtPt(s′, a′|π)
)
X(s, a) + γTX(0,0)

=
∑

(s,a)∈S×A
(1− γ)ν(s, a)X(s, a) + γTX(0,0) .

Since E[X̄] = ⟨X⟩ and the quantities X(s, a) are analytically known for all (s, a) ∈ S × A, it is straightforward to
post-process X̄ ← X̄−γTX(0,0)

(1−γ) to obtain an estimator with expectation

E[X̄] =
∑

s,a

ν(s, a)X(s, a) .

Denoting m as the number of state-action qubits and n as the number of qubits for the gradient register, the total number
of qubits we required is T qubits for the discount register, mT for the trajectory register, m for the occupancy register,
and n for the gradient register, yielding O(mT + n) qubits.

M Improvement over QBounded

First we note that σQ ≤ ∆Q. Let [m,M ] be the range of the Q-values as predicted by the critic. Note that σ2
Q ≤

(M−m)2

4 ≤ (2∆Q)2

4 = ∆2
Q following Popoviciu’s inequality and noting that the range M −m is limited by two times

the maximal deviation from the baseline.

Now we show the relation between σ∇1
and B1. Note that

σ∂(i, j) = SD(s,a)∼ν̃′(∂i,j log(π(a|s)))
= SD(s,a)∼ν̃′

(
Ziκ(s, c[j])/

√
Σii)

)

≤ max
s

SDa∼π(a|s)
(
Ziκ(s, cj)/

√
Σii)

)

= max
s
κ(s, cj)/

√
Σii (standard deviation of Z-score is 1)

≤ κmax/
√
Σii .
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where we use Zi = (a[i]− µ(s)[i])Σ−1
ii ∼ N (0, 1/

√
Σii) because the policy is Gaussian, and the upper bound on κ

(e.g. for quantum kernels, κ(s, cj) ≤ 1 for all state-pairs). Therefore, we set the upper bound according to
σ∇1

= ∥σ∂(:)∥1
≤ κmaxNA√

Σmin
,

where Σmin = miniΣii. This bound yields the same big O complexity as B1 in the finite-precision Gaussian
(Appendix J.2). However, the hidden constant is much larger for B1. To illustrate the hidden constant, observe that∑A

i=1

∑N
j=1

ui−li√
Σi,i

κ(s, cj)

∑A
i=1

∑N
j=1 κ(s, cj)/

√
Σii
≥ min

i

A ui−li√
Σi,i

∑N
j=1 κ(s, cj)

A
∑N
j=1 κ(s, cj)/

√
Σii

= min
i
ui − li .

Combining both σQ and σ∇1 , the improvement is at least a factor 2mini(ui − li).

N CQRAC query complexity

a) Performing QEstimator on UX,S×A, the random variable of interest is the d-dimensional X(s, a) = (Q̂(s, a) −
b(s))∇θ log(π(a|s)). Each query takes T = O(T ) time steps of interactions with the environment. It follows that

√
Tr(ΣX) =

√√√√
d∑

i=1

Var(Xi)

≤ max
s,a

√√√√
d∑

i=1

(Xi − E[Xi])
2 (definition of variance)

≤ max
s,a

∥∥∥X̃ − E[X̃]
∥∥∥
2

(definition of ℓ2 norm)

≤ max
s,a

(∥∥∥X̃
∥∥∥
2
+
∥∥∥−E[X̃]

∥∥∥
2

)
(triangle inequality)

≤ max
s,a

2
∥∥∥X̃
∥∥∥
2

(drop the sign and ∥E[X]∥2 ≤ max
s,a
∥X∥2)

= max
s,a

2
∥∥∥(Q̂(s, a)− b(s))∇θ log(π(a|s))

∥∥∥
2

(definition of X̃)

≤ 2max
s,a

∥∥∥Q̂(s, a)− b(s)
∥∥∥
2
max
s′,a′
∥∇θ log(π(a′|s′))∥2 (Cauchy-Schwarz and maximum)

= 2max
s,a
|Q̂(s, a)− b(s)|max

s′,a′
∥∇θ log(π(a′|s′))∥2 (Q̂(s, a)− b(s) is one-dimensional)

≤ 2max
s,a
|Q̂(s, a)− b(s)|max

s′,a′
dξ(p) ∥∇θ log(π(a′|s′))∥p (Hölder’s inequality)

≤ 2dξ(p)∆QBp (definition of ∆Q and Bp) .
Following Theorem 3.4 in [CHJ22], the QEstimator algorithm will return an ϵ-correct estimate X̄ such that

∥∥X̄ − E[X]
∥∥
∞ ≤

√
Tr(ΣX) log(d/

√
δ)

n

≤ 2dξ(p)∆QBp log(d/
√
δ)

n
(84)

with probability at least 1− δ.

Following the reasoning of Lemma 6.3, we post-process X̄ ← X̄−γTX(0,0)
(1−γ) to convert the state occupancy distribution

to the occupancy measure, ν(s, a) = 1
1−γ ν̃(s, a). It follows from Eq. 84 that an ϵ-correct estimate for E[X] is obtained

within

n ≤ 2dξ(p)∆QBp log(d/
√
δ)

(1− γ)ϵ

= Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)
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O(T ) time steps of interactions with the environment.

b) Performing QEstimator on UX,S×A, the random variable of interest is the d-dimensional X(s, a) = (Q̂(s, a) −
b(s))∇θ log(π(a|s)). Denote Y (s, a) = (Q̂(s, a)− b(s)) and Z(s, a) = ∇θ log(π(a|s)). Then for any i = 1, . . . , d,
the random variables Yi and Zi obtained under ν̃′ satisfy the following:
Var(YiZi) = Cov(Y 2

i , Z
2
i ) + (Var(Yi) + E[Yi]2)(Var(Zi) + E[Zi]2)− (Cov(XiYi) + E[Xi]E[Yi])2

(variance of product of dependent random variables, e.g. [Sta23])

≤ Cov(Y 2
i , Z

2
i ) + (Var(Yi) + E[Yi]2)(Var(Zi) + E[Zi]2) (drop negative term )

= Cov(Y 2
i , Z

2
i ) + Var(Yi)(Var(Zi) + E[Zi]2) (E[Yi] = 0 due to definition of b(s))

= O
(
Var(Yi)Var(Zi) + Var(Yi)E[Zi]2

)
(by assumption, Cov(Y 2

i , Z
2
i ) ≤ cVar(Yi)Var(Zi) for c > 0)

= O (Var(Yi)Var(Zi)) (by assumption, Var(Zi) ≥ E[Zi]2)

= O
(
σ2
Qσ∂(i)

2
)
.

From this computation, it follows that

√
Tr(ΣX) =

√√√√
d∑

i=1

Varν̃′(Xi)

= O



√√√√

d∑

i=1

σ2
Qσ∂(i)

2




= O
(
∥σQσ∂(:)∥2

)
(definition of ℓ2 norm)

= O
(
dξ(p) ∥σQσ∂(:)∥p

)
(Hölder’s inequality)

= O
(
dξ(p)σQσ∇p

)
(definition of σ∇p

) .

Following steps analogous to a), the QEstimator algorithm returns an ϵ-correct estimate for E[X] within

n = O
(
dξ(p)σQσ∇p log(d/

√
δ)

(1− γ)ϵ

)

= Õ
(
dξ(p)σQσ∇p

(1− γ)ϵ

)

O(T ) time steps of interactions with the environment.

O CQRAC quadratic query complexity improvement

For the classical algorithm, one may use any sub-Gaussian multivariate mean estimator [LM19] as these yield the
same query complexity as the computationally efficient estimator of Hopkins [Hop20], i.e. an ℓ2 error of ϵ2 ≤
C
(√

Tr(ΣX)/n+
√
∥ΣX∥ log(1/δ)/n

)
with probability at least 1− δ for some constant C > 0. Applied to our ℓ∞

setting, we obtain

n = O
(
Tr(ΣX) + ∥ΣX∥ log(1/δ)

ϵ22

)
((x+ y)2 = O(x2 + y2))

= O
(
d2ξ(p)∆2

QBp + ∥ΣX∥ log(1/δ)
ϵ22

)
(from upper bound on

√
Tr(ΣX) in Appendix Na)

= O
(
d2ξ(p)∆2

QBp + ∥ΣX∥ log(1/δ)
ϵ2

)
(∥X∥∞ ≤ ∥X∥2 implies ϵ ≤ ϵ2)

= Õ
(
d2ξ(p)∆2

QB
2
p + ∥ΣX∥
ϵ2

)
(removing logarithmic factors) .
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Correcting for the discount factor, we obtain Eq. 64. Analogous computations with upper bound Tr(ΣX) ≤
d2ξ(p)σ2

Qσ
2
∇p

yield Eq. 65. Comparing both results to Theorem 6.2a and b, respectively, proves the quadratic query
complexity speedup.

P CQRAC total query complexity

P.1 Tabular averaging critic

Let δ1, δ2 ∈ (0, 1) such that δ = δ1 + δ2 represent failure probability upper bounds for the policy gradient and critic
error, respectively. We will prove the query complexity for both failure probabilities separately and then note that both
query complexities must hold with probability at least 1− δ.

For the (classical) Compatible RKHS Actor-critic, the same samples are used for the critic and policy gradient estimates.
Therefore, taking the worst-case of the query complexities for the policy gradient and the critic yields the desired result.
For the critic, the number of queries n2 relates to m, the total number of state-action samples, as n2 = m

2T = O(m/T ).
Then apply the classical multivariate Monte Carlo (see Appendix A) based on the |S × A|-dimensional vector of
Q-values. Since each state-action pair is sampled independently, at least m|S × A| samples are required to ensure m
samples per state-action pair. However, we can drop the factor |S × A| from the big O notation due to the limited
tabular state-action space. Consequently, with probability at least 1− δ2

m = O
(
V 2

max log(1/δ2)

ϵ′2

)

= Õ
(
V 2

max

ϵ′2

)

= Õ
(
dξ(p)T∆QBp
(1− γ)ϵ

)
(since ϵ′ ≥

√
(1− γ)ϵ

dξ(p)T∆QBp
Vmax)

n2 = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)
. (85)

For the policy gradient, with probability at least 1− δ1, the number of queries is bounded by (see Eq. 64)

n1 = Õ
(
d2ξ(p)∆2

QB
2
p + ∥ΣX∥

(1− γ)2ϵ2

)
.

Note that n1 > n2 such that with probability 1− δ, the number of total queries is bounded by

n = Õ
(
d2ξ(p)∆2

QB
2
p + ∥ΣX∥

(1− γ)2ϵ2

)
.

For Compatible Quantum RKHS Actor-critic (see Algorithm 2), n1 queries to a T -step implementation of UX,S×A are
used for quantum policy gradient estimates while n2 queries to 2T -step implementations of UP and UR are used for the
critic estimate, both of which represent O(T ) steps of environment interaction. The result for n2 follows directly from
Eq. 85. The result for n1 is given by (see Eq. 62)

n1 = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)
.

Summing the two equivalent query complexities yields the total query complexity, such that with probability 1− δ

n = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)
.

P.2 Kernel ridge regression critic

From Eq. 32, it follows that the error converges in probability at a rate
∥∥∥Q̂−Q

∥∥∥
L2

= OP
(
m− l

2l+d

)
.
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Therefore it follows that

m = OP
(
ϵ′−

2l+d
l

)
= OP

(
ϵ′−4

)
,

where the last equality follows from l > d/2 as in the preconditions of Lemma 3.4. Due to setting ϵ′ ≥(
(1−γ)ϵ

Tdξ(p)∆QBp

)1/4
, it follows that

m = OP
(
Tdξ(p)∆QBp
(1− γ)ϵ

)

and therefore that

n2 = OP
(
dξ(p)∆QBp
(1− γ)ϵ

)
.

Consequently, with high probability 1− δ2 for some δ2 > 0, the desired ϵ′ bound can be obtained within

n2 = Õ
(
dξ(p)∆QBp
(1− γ)ϵ

)

queries. The remainder of the proof is completely analogous to the proof of Corollary 6.2.

Q DCQRAC query complexity

a) We apply QBounded (algorithm in Theorem 3.3 of [CHJ22]) to a state occupancy oracle UX̃,S based on the

normalised random variable X̃(s) =
κ(s,·)∇aQ̂(s,a)|a=µ(s)

Z , where Z = dξ(p)κmax
p Cp, which will be measured after T

time steps of interactions with the environment.

Note that we can express X(s) as an NA-dimensional vector

X(s) =
(
κ(s, c1)∂a1Q̂(s, a)|a=µ(s), κ(s, c2)∂a1Q̂(s, a)|a=µ(s), . . . , κ(s, cN )∂aAQ̂(s, a)|a=µ(s)

)
∈ RNA .

It follows for any s ∈ S that
∥∥∥X̃(s)

∥∥∥
2
≤ 1

Z

∥∥∥(κ(s, c1)∂a1Q̂(s, a)|a=µ(s), . . . , κ(s, cN )∂aAQ̂(s, a)|a=µ(s))
∥∥∥
2

≤ (NA)ξ(p)

dξ(p)κmax
p Cp

∥∥∥(κ(s, c1)∂a1Q̂(s, a)|a=µ(s), . . . , κ(s, cN )∂aAQ̂(s, a)|a=µ(s))
∥∥∥
p

(Hölder’s inequality)

=
(NA)ξ(p)

dξ(p)κmax
p Cp




N∑

i=1

A∑

j=1

|κ(s, ci)∂aj Q̂(s, a)|a=µ(s)|p



1/p

(definition of p-norm)

=
(NA)ξ(p)

dξ(p)κmax
p Cp




N∑

i=1

A∑

j=1

|κ(s, ci)|p|∂aj Q̂(s, a)|a=µ(s)|p



1/p

(|
∑

i

xiyi|p ≤
∑

i

|xiyi|p ≤
∑

i

|xi|p|yi|p)

=
(NA)ξ(p)

dξ(p)κmax
p Cp



(

N∑

i=1

|κ(s, ci)|p
)


A∑

j=1

|∂aj Q̂(s, a)|a=µ(s)|p





1/p

(rearranging)

=
(NA)ξ(p)

dξ(p)κmax
p Cp

∥κ(s, :)∥p
∥∥∥∇aQ̂(s, a)|a=µ(s)

∥∥∥
p

(p-norm definition)

≤ (NA)ξ(p)

dξ(p)κmax
p Cp

κmax
p Cp (definition of κmax

p and Cp)

= 1 (d = NA for kernel policy) .

Applying Theorem 3.3 of [CHJ22] to X̃ , QBounded returns an ϵ
Z -precise estimate of E

[
X̃
]
, such that

∥∥∥X̃ − E
[
X̃
]∥∥∥

∞
≤ ϵ

dξ(p)κmax
p Cp
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within

n ≤ dξ(p)κmax
p Cp log(d/δ)

ϵ

oracle queries. Therefore, after renormalisation, an ϵ-precise estimate X̄ is obtained within the same number of oracle
queries.

Following the reasoning of Lemma 6.3 with state occupancy oracle, we post-process X̄ ← X̄−γTX(0)
(1−γ) to convert the

state occupancy distribution to the occupancy measure, νπ(s) = 1
1−γ ν̃π(s). It follows that

n ≤ dξ(p)κmax
p Cp log(d/δ)

(1− γ)ϵ

= Õ
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
.

This proves the first statement (Eq. 71).

b) Follow the same procedure as a) but define the normalisation constant Z = dξ(p)EpCp, and express X(s) as a
d-dimensional vector

X(s) = ∇θµθ(s)∇aQ̂(s, a)|a=µθ(s) =
(
∂θ1µθ(s)

⊺∇aQ̂(s, a)|a=µθ(s), . . . , ∂θdµθ(s)
⊺∇aQ̂(s, a)|a=µθ(s)

)
∈ Rd .

Following analogous computations, we obtain

∥∥∥X̃(s)
∥∥∥
2
≤ dξ(p)

dξ(p)EpCp

(
d∑

i=1

|∂θiµθ(s)⊺∇aQ̂(s, a)|a=µθ(s)|p
)1/p

(definition of p-norm)

=
dξ(p)

dξ(p)EpCp




d∑

i=1

|
A∑

j=1

∂θiµθ(s)j∂aj Q̂(s, a)|a=µθ(s)|p



1/p

(inner product)

≤ dξ(p)

dξ(p)EpCp




d∑

i=1

A∑

j=1

|∂θiµθ(s)j |p|∂aj Q̂(s, a)|a=µθ(s)|p



1/p

(|
∑

i

xiyi|p ≤
∑

i

|xiyi|p ≤
∑

i

|xi|p|yi|p)

≤ dξ(p)

dξ(p)EpCp



(

d∑

i=1

max
j′
|∂θiµθ(s)j′ |p

)


A∑

j=1

|∂aj Q̂(s, a)|a=µθ(s)|p





1/p

(max over action dimensions, rearrange)

≤ dξ(p)

dξ(p)EpCp
∥∇θµθ(s)∥p,max

∥∥∥∇θQ̂(s, a)|a=µθ(s)

∥∥∥
p

(p- and p,max-norm definitions)

≤ dξ(p)

dξ(p)EpCp
EpCp (definition of Ep and Cp)

= 1 .

and n = Õ
(
dξ(p)EpCp

(1−γ)ϵ

)
, which matches Eq. 72.

R DCQRAC quadratic query complexity speedup

Note that

∥X∥∞ ≤ max
s,a

∥∥∥κ(s, ·)∇aQ̂(s, a)|a=µ(s)
∥∥∥
∞

≤ max
s,a

∥∥∥κ(s, ·)∇aQ̂(s, a)|a=µ(s)
∥∥∥
p

(∥x∥∞ ≤ ∥x∥p)

≤ κmax
p Cp (see Appendix Q) .
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Correcting for the discount factor and applying classical multivariate Monte Carlo (see Appendix A) to the range
[−B,B], where B =

κmax
p Cp

1−γ yields

n = Õ
(
(κmax
p Cp)

2

(1− γ)2ϵ2

)
.

For the quantum algorithm, Eq. 71 with dξ(p) = 1 for p ∈ [1, 2] gives

n = Õ
(
κmax
p Cp

(1− γ)ϵ

)
,

demonstrating the quadratic query complexity speedup.

S DCQRAC total query complexity

S.1 Tabular averaging critic

Note that both UX,S (for the policy gradient) as well as UP and UR (for the critic) require T = O(T ) time steps of
environment interactions per call. The proof follows a similar reasoning as in Appendix P.1. Denote n1 as the number
of queries for computing the policy gradient and n2 as the number of queries for computing the critic. Note that

m = Õ
(
V 2

max

ϵ′2

)

= Õ
(
Tκmax

p Cp

(1− γ)ϵ

)
(since ϵ′ ≥

√
(1− γ)ϵ

Tdξ(p)κmax
p Cp

Vmax)

and that based on Eq. 71 and Algorithm 3

n2 = n1 = Õ
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
.

The classical algorithm has the same error requirement and the same classical critic so has the same setting for n2.

Sum n1 and n2 to obtain the total query complexity for DCQRAC,

n = Õ
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
+ Õ

(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
= Õ

(
dξ(p)κmax

p Cp

(1− γ)ϵ

)
.

For (classical) Deterministic Compatible RKHS Actor-Critic, note that the n1 term dominates over n2 as defined above,
giving a query complexity of

n = Õ
(
(κmax
p Cp)

2

(1− γ)2ϵ2

)
.

The quantum algorithm therefore yields a quadratic improvement for p ∈ [1, 2], which gives dξ(p) = dmax{0,1/2−1/p} =
1.

S.2 Kernel ridge regression critic

The start of the proof follows the reasoning of the proof of Appendix P.2. Due to setting ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)κmax

p Cp

)1/4
as a

precondition, we require
m = OP

(
ϵ′−4

)
(see Appendix P.2 for the derivation)

= OP
(
Tdξ(p)κmax

p Cp

(1− γ)ϵ

)

state-action samples and since n2 = m
2T ,

n2 = OP
(
dξ(p)κmax

p Cp

(1− γ)ϵ

)

queries. Therefore, with high probability 1 − δ2 for some δ2 > 0, the desired ϵ′ bound can be obtained within

n2 = Õ
(
dξ(p)κmax

p Cp

(1−γ)ϵ

)
queries. The remainder of the proof is completely analogous to Appendix S.1.
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[JCOD23] Sofiene Jerbi, Arjan Cornelissen, Māris Ozols, and Vedran Dunjko. Quantum policy gradient algorithms.
In Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023),
pages 1–24, 2023.

[JFP+23] Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kübler, Hans J. Briegel, and Vedran
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[SSB24] André Sequeira, Luis Paulo Santos, and Luis Soares Barbosa. On Quantum Natural Policy Gradients.
arXiv preprint arXiv:2401.08307, pages 1–14, 2024.

[Sta23] Stackoverflow. https://stats.stackexchange.com/questions/15978/variance-of-product-of-dependent-
variables, 2023.

[TWCH22] Supanut Thanasilp, Samson Wang, M. Cerezo, and Zoë Holmes. Exponential concentration and
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