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Reinforcement learning (RL) is a technique that is successful across a wide range of interactive applications. A
key limitation of RL is that it requires a large number of samples before a high-performing policy is learned. With
the aim of reducing the sample complexity, several works have proposed applying RL systems within quantum-
accessible environments, where interactions with the environment occur within a quantum system allowing to make
use of superpositions across state-action trajectories. While exponential sample complexity improvements have only
been shown for a special case environment formulated around Simon’s problem [1], recent policy gradient algorithms
demonstrate benefits in terms of quadratic sample complexity improvements when applying a parametrised quantum
circuit within a quantum environment due to the properties of quantum superpositions [2]. Moreover, several quantum
RL works demonstrate that by using parametrised quantum circuits (PQCs), the number of parameters can be
reduced compared to using classical neural networks [3, 4] – although this line of work focused primarily on classical
environments.

Despite the promise of quadratic or better improvements, limited work has been done in quantum-accessible en-
vironments, and especially in the construction of suitable PQCs. Previous work has introduced various PQCs for
classical RL [5], using hardware efficient PQCs with alternating layered architecture. Two of these circuit classes,
namely Raw-PQC and Softmax-PQC, have then been analysed further in the context of quantum-accessible envi-
ronments when using quantum policy gradient (QPG) algorithms [2], which yield quadratic improvements in query
complexity, i.e. the calls to the oracle to estimate the policy gradient.

Due to quantum states residing in a high-dimensional complex Hilbert space, PQCs have a natural interpretation
in terms of kernel methods. While so far, this property has been discussed widely for supervised learning [6, 7], this
has not yet been adopted in RL.

Our work is inspired by streams of work in classical RL that use kernel-based formulations of the policy [8, 9].
We formulate Gaussian and softmax policies based on quantum kernels and analyse their efficiency across various
optimisation schemes with quantum policy gradient algorithms. While maintaining quadratic speedups associated
with QPG, the use of quantum kernels for the policy definition leads to advantages such as analytically available
policy gradients, tunable expressiveness, and techniques for sparse non-parametric representations of the policy within
the context of vector-valued state and action spaces. This also leads to a quantum actor-critic algorithm with an
interpretation as performing a natural gradient. Unlike quantum algorithms for natural policy gradient [10, 11], the
proposed algorithm is formulated within the kernel method framework and is tailored to the quantum accessible
environment where it can exploit a quadratic sample complexity improvement as well as a variance reduction as is
often associated with actor-critic RL.

Using quantum kernels for reinforcement learning policies.– Kernel methods have strong theoretical
foundations for functional analysis and supervised learning (see e.g. [12] for an overview). We review some of these
useful properties here and how they can be applied to formulate and learn efficient policies for quantum RL.

First, the kernel function determines the expressible function space through its reproducing kernel Hilbert space
(RKHS). The choice of the kernel function thereby provides an opportunity to balance the expressiveness, training
efficiency, and generalisation. For instance, reducing the bandwidth factor to c < 1 of the squared cosine kernel

κ(s, s′) =

d∏
j=1

cos2(c(sj − s′j)/2) (1)

restricts features to parts of the Bloch sphere, allowing improved generalisation [13]. As this affects the coverage of
the Bloch sphere, this tuning factor can be related to expressiveness measures based on the Haar distribution, such
as the frame potential or the KL difference [14]. Tuning a single parameter is significantly more convenient compared
to redesigning the ansatz of a PQC.

Second, kernel functions inherently define a particular feature-map. This interpretation follows from Mercer’s
theorem, which states that every kernel function can be written as

κ(s, s′) =

∞∑
i=1

λiei(s)ei(s
′) ,

where for all i, ei is an eigenfunction such that λiei(s
′) = TK [ei](s

′) =
∫ b

a
κ(s, s′)ei(s)ds with eigenvalue λi. Mercer’s
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theorem leads to the kernel trick,

κ(s, s′) = ⟨ϕ(s), ϕ(s′)⟩ ,

which allows writing the kernel function as an inner product based on a feature-map ϕ. For quantum kernels, this
allows a definition of kernels in terms of the data encoding as a feature-map. For instance, the basis encoding
corresponds to the Kronecker delta kernel, the amplitude encoding corresponds to the inner product quantum kernel,
etc. [7]. We construct kernel-based policies which construct kernel computations in quantum circuits both in the
explicit view and the implicit (i.e. inner product) view.

Third, the kernel based formalism is based on a representative set of state-action pairs. In a supervised learning
setting, the representer theorem guarantees that the optimal function approximator can be written as linear combi-
nation of kernel evaluations based on input data pairs, which leads to the formulations of support vector machines
and kernel regression. In quantum supervised learning, one uses this property to evaluate the kernel in a quantum
device and the model is then computed from the kernel in a quantum or a classical device [6, 15]. In a quantum RL
setting, we analogously consider the optimal deterministic policy µ as a linear combination of kernel computations
with regard to a select subset of the states:

µ(s) =

N∑
i=1

βiκ(s, si) . (2)

Using this quantity as the mean of a Gaussian distribution allows the quantum analogue of the Gaussian policies
that are popular in classical RL with vector-valued action spaces. We show this comes with analytical forms for the
gradient and is suitable for various non-parametric optimisation schemes. We will formulate a special class of PQCs
which form circuits with Eq. 2 as their expectation, allowing a novel way to form expressive and coherent policies in
the context of quantum environments.

Fourth, with the aim of performing ℓ2-regularisation in the context of kernel ridge regression, we make use of the
result that for every RKHS HK with reproducing kernel K, and any g ∈ HK ,

||g||2HK
= ⟨g, g⟩HK

=

∫
(Rg(x))2dx

where the operator R : HK → D can be interpreted as extracting information from the function value which gets
penalised during optimisation [12]. For instance, it can penalise large higher or lower order derivatives, large function
values, or still other properties, leading to smoother optimisation landscapes and therefore improved query complexity
and convergence to the global optimum. This property contributes to an improved query complexity when considering
actor-critic algorithms with smooth critic functions and can also be exploited when directly optimising the kernel.

Overview of the contributions.– This work contributes the following theoretical results to the field of quantum
RL:

• We propose two classes of quantum kernel policies (QKPs) for learning in quantum-accessible environments.
First, we propose Representer PQCs, which incorporate representer theorem based formalisms directly within a
quantum circuit and which are suitable for both analytical and numerical gradient based optimisation. Second,
we propose Gaussian kernel-based policies based on a classically known mean function and covariance, which
due to the mean and covariance being parametrised classically has known analytical gradient, thereby removing
the need for expensive estimation procedures required for analytical quantum policy gradient with traditional
PQCs. We also provide a formula to scale the number of representers based on a Lipschitz constant.

• We use a central differencing approach on phase oracles of the value function for a numerical quantum policy
gradient algorithm [2] based on Representer PQCs. We report a query complexity comparable to Jerbi et al. [2]
but note the potentially lower number of parameters.

• We use analytical quantum policy gradient algorithms which perform quantum multivariate Monte Carlo on
binary oracles of the policy gradient. We first confirm a query complexity that is comparable to Jerbi et al. [2].

• We propose two further improvements in an algorithm we call Compatible Quantum RKHS Actor-Critic
(CQRAC). First, the parameter dimensionality of the policy is reduced by using vector-valued kernel matching
pursuit. Second, we formulate a quantum oracle, which we call the state-action occupancy oracle, which com-
putes the policy gradient samples based on the critic’s prediction on a particular state-action pair rather than
on the cumulative reward of the trajectory, thereby reducing the variance of the estimate produced by analyti-
cal quantum policy gradient. Theorem 6.2a (see main text) demonstrates that the resulting query complexity
depends on the maximal deviation from a baseline estimate, rather than on the maximal cumulative reward.
Theorem 6.2b (see main text) provides an improved result which exploits an upper bound on the variance of
the gradient of the log-policy, and thereby demonstrates how smooth policies such as the Gaussian kernel-based
policy can give additional query complexity benefits.
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TABLE I: Query complexity of policy gradient estimation with PQCs. General notations: A is the action space;
rmax denotes the maximal absolute reward; T is the horizon; d is the parameter dimensionality; γ is the discount
factor; and ϵ is the tolerance for error in the gradient estimate. Specific notations: T is the temperature of the

softmax; D is an upper bound on higher-order derivatives of the policy; ∆Q is the maximal absolute deviation of the
critic’s prediction to a baseline estimate; N is the number of representers in a kernel policy; σQ is an upper bound
on the standard deviation of the critic’s prediction to the baseline estimate; upper bounds on p-norms are denoted
as Bp for the gradient of the log-policy, as σ∇p

for the standard deviation of the partial derivative of the log-policy,
as κmax

p for the kernel computations across policy centres, and as Cp for the gradient of the critic w.r.t. actions; and
ξ(p) = max{0, 1/2− 1/p} is used for converting across p-norms.

Algorithm Oracle and estimation Query complexity

1. Policy gradient with Softmax-PQC [17] Return oracle, single-qubit param-
eter shift rule [18], and classical
Monte Carlo

Õ
(

T2r2maxT
2

ϵ2(1−γ)2
)
)

2. Numerical QPG and Raw-PQC [2] Return oracle, quantum gradient
estimation via central differencing
[19]

Õ
(√

dDTrmax
ϵ(1−γ)

)

3. Analytical QPG and Softmax-PQC [2] Analytical gradient oracle, bounded
quantum multivariate Monte Carlo
(Theorem 3.3 [20])

Õ

(
dξ(p)

BpTrmax

ϵ(1− γ)

)

Proposed: Numerical QPG in RKHS cf.2 cf.2 but d = NA

Proposed: Analytical QPG in RKHS cf.3 cf.3 but d = NA

Proposed: CQRAC Analytical gradient oracle, near-
optimal quantum multivariate
Monte Carlo (Theorem 3.4 [20])

Õ
(
dξ(p)

∆QBp

(1−γ)ϵ

)
for d = NA

Õ

(
dξ(p)σQσ∇p

(1−γ)ϵ

)
for d = NA

Proposed: DCQRAC cf.3 Õ
(
dξ(p)

κmax
p Cp

(1−γ)ϵ

)
for d = NA

• We further propose Deterministic Compatible Quantum RKHS Actor-Critic (DCQRAC), which is based on
the deterministic policy gradient theorem [16]. The approach makes use of similar formalisms as its non-
deterministic counterpart, though with the key differences that it is based on state occupancy rather than
state-action occupancy, and that the policy gradient takes a different form. Theorem 6.3 demonstrates that the
resulting query complexity depends on the norm of kernel features and the gradient norm of the critic, which
illustrates the importance of techniques such as kernel matching pursuit and regularisation.

Our query complexity results compare favourably to other policy gradients methods for PQCs (see Table I).
Why QTML.– This paper presents numeric and analytical optimisation techniques for quantum kernel policies

for efficient RL in vector-valued action spaces. We prove quadratic improvements of kernel-based policy gradient and
actor-critic algorithms over their classical counterparts, across different formulations of stochastic and deterministic
kernel-based policies. Two actor-critic algorithms are proposed that improve on quantum policy gradient algorithms
under favourable conditions. The proposed quantum kernel policies allow convenient analytical forms for the gradient
and techniques for expressiveness control. Considering the significance for the quantum machine learning community,
we believe our work is well-suited for QTML.
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