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ABSTRACT

Parametrised quantum circuits offer expressive and data-efficient representations for machine learning.
Due to quantum states residing in a high-dimensional complex Hilbert space, parametrised quantum
circuits have a natural interpretation in terms of kernel methods. The representation of quantum
circuits in terms of quantum kernels has been studied widely in quantum supervised learning, but has
been overlooked in the context of quantum reinforcement learning. This paper proposes parametric
and non-parametric policy gradient and actor-critic algorithms with quantum kernel policies in
quantum environments. This approach, implemented with both numerical and analytical quantum
policy gradient techniques, allows exploiting the many advantages of kernel methods, including
available analytic forms for the gradient of the policy and tunable expressiveness. The proposed
approach is suitable for vector-valued action spaces and each of the formulations demonstrates a
quadratic reduction in query complexity compared to their classical counterparts. Two actor-critic
algorithms, one based on stochastic policy gradient and one based on deterministic policy gradient
(comparable to the popular DDPG algorithm), demonstrate additional query complexity reductions
compared to quantum policy gradient algorithms under favourable conditions.

1 Introduction

Reinforcement learning (RL) is a technique that is successful across a wide range of interactive applications. A key
limitation of RL is that it requires a large number of samples before a high-performing policy is learned. With the
aim of reducing the sample complexity, several works have proposed applying RL systems within quantum-accessible
environments, where interactions with the environment occur within a quantum system allowing to make use of
superpositions across state-action trajectories. While exponential sample complexity improvements have only been
shown for a special case environment formulated around Simon’s problem [DLWT17], recent policy gradient algorithms
demonstrate benefits in terms of quadratic sample complexity improvements when applying a parametrised quantum
circuit within a quantum environment due to the properties of quantum superpositions [JCOD23]. Moreover, several
quantum RL works demonstrate that by using parametrised quantum circuits, the number of parameters can be reduced
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compared to using classical neural networks [Lan21, Che23] – although this line of investigation has primarily focused
on classical environments.

Despite the promise of quadratic or better improvements, limited work has been done in quantum-accessible en-
vironments, and especially in the construction of suitable parametrised quantum circuits (PQCs). Previous work
has introduced various PQCs for classical RL [JGMB21], using hardware efficient PQCs with alternating layered
architecture. Two of these circuit classes, namely Raw-PQC and Softmax-PQC, have then been analysed further in the
context of quantum-accessible environments when using quantum policy gradient (QPG) algorithms [JCOD23], which
yield quadratic improvements in query complexity, i.e. the calls to the oracle to estimate the policy gradient. PQCs have
also been applied to the quantum control context, where the overall sample complexity is not mentioned [WJW+20] or
is without quadratic improvement [SSB23].

Due to quantum states residing in a high-dimensional complex Hilbert space, parametrised quantum circuits have a
natural interpretation in terms of kernel methods. While so far, this property has been discussed widely for supervised
learning [SK19, Sch21], this has not yet been adopted in reinforcement learning.

Our work is inspired by streams of work in classical RL that use kernel-based formulations of the policy [LS15, BS03].
We formulate Gaussian and softmax policies based on quantum kernels and analyse their efficiency across various
optimisation schemes with quantum policy gradient algorithms. While maintaining quadratic speedups associated with
QPG, the use of quantum kernels for the policy definition leads to advantages such as analytically available policy
gradients, tunable expressiveness, and techniques for sparse non-parametric representations of the policy within the
context of vector-valued state and action spaces. This also leads to a quantum actor-critic algorithm with an interpretation
as performing a natural gradient. Unlike quantum algorithms for natural policy gradient [MSP+23, SSB24], the proposed
algorithm is formulated within the kernel method framework and is tailored to the quantum accessible environment
where it can exploit a quadratic sample complexity improvement as well as a variance reduction as is often associated
with actor-critic RL.

1.1 Using quantum kernels for reinforcement learning policies

Kernel methods have strong theoretical foundations for functional analysis and supervised learning (see e.g. [SS03]
for an overview). We review some of these useful properties here and how they can be applied to formulate and learn
efficient policies for quantum reinforcement learning.

First, the kernel function determines the expressible function space through its reproducing kernel Hilbert space (RKHS;
see Section 2.2). The choice of the kernel function thereby provides an opportunity to balance the expressiveness,
training efficiency, and generalisation. For instance, reducing the bandwidth factor to c < 1 of the squared cosine kernel

κ(s, s′) =
d∏

j=1

cos2(c(s− s′)/2) (1)

restricts features to parts of the Bloch sphere, allowing improved generalisation [CPP+22]. As this affects the coverage
of the Bloch sphere, this tuning factor can be related to expressiveness measures based on the Haar distribution, such as
the frame potential or the KL difference [NY21]. Tuning a single parameter is significantly more convenient compared
to redesigning the ansatz of a PQC.

Second, kernel functions inherently define a particular feature-map. This interpretation follows from Mercer’s theorem,
which states that every kernel function can be written as

κ(s, s′) =
∞∑

i=1

λiei(s)ei(s
′) ,

where for all i, ei is an eigenfunction such that λiei(s′) = TK [ei](s
′) =

∫ b

a
κ(s, s′)ei(s)ds with eigenvalue λi –

provided the so-called Mercer’s condition, which for example, for a counting measure is the positive definiteness of κ.
Mercer’s theorem leads to the kernel trick,

κ(s, s′) = ⟨ϕ(s), ϕ(s′)⟩ ,
which allows writing the kernel function as an inner product based on a feature-map ϕ. For quantum kernels, this allows
a definition of kernels in terms of the data encoding as a feature-map. For instance, the basis encoding corresponds
to the Kronecker delta kernel; the amplitude encoding corresponds to the inner product quantum kernel; the repeated
amplitude encoding corresponds to a polynomial kernel; the coherent state encoding corresponds to a Gaussian Kernel;
and the product encoding corresponds to a cosine kernel [Sch21].



Third, the kernel based formalism is based on a representative set of state-action pairs. In a supervised learning setting,
the representer theorem guarantees that the optimal function approximator can be written as linear combination of kernel
evaluations based on input data pairs, which leads to the formulations of support vector machines and kernel regression.
In quantum supervised learning, one uses this property to evaluate the kernel in a quantum device and the model is then
computed from the kernel in a quantum or a classical device [SK19, JFP+23]. In a quantum reinforcement learning
setting, we analogously consider the optimal deterministic policy µ as a linear combination of kernel computations with
regard to a select subset of the states:

µ(s) =

N∑

i=1

βiκ(s, si) .

Using this quantity as the mean of a Gaussian distribution allows the quantum analogue of the Gaussian policies that
are popular in classical reinforcement learning with vector-valued action spaces. Moreover, it comes with analytical
forms for the gradient and is suitable for various non-parametric optimisation schemes.

Fourth, with the aim of performing regularisation as a subroutine for sparsification within a non-parametric learning
algorithm, we make use of the result that for every RKHSHK with reproducing kernel K, and any g ∈ HK ,

||g||2HK
= ⟨g, g⟩HK

=

∫
(Rg(x))2dx

where the operator R : HK → D can be interpreted as extracting information from the function value which gets
penalised during optimisation [SS03]. For instance, it can penalise large higher or lower order derivatives, large function
values, or still other properties, leading to smoother optimisation landscapes and therefore improved convergence to the
global optimum. This property can be exploited when directly optimising the kernel (see Section 7.2).

1.2 Overview of the contributions

This work contributes the following theoretical and empirical results to the field of quantum reinforcement learning:

• In Section 4, we propose two classes of kernel-based policies. First, we propose Representer PQCs, which
incorporate representer theorem based formalisms directly within a quantum circuit and which are suitable
for both analytical and numerical gradient based optimisation. Second, we propose Gaussian kernel-based
policies based on a classically known mean function and covariance, which has known analytical gradient
removing the need for expensive estimation procedures required for analytical quantum policy gradient with
traditional PQCs. Via Claim 4.1, we also provide a formula to scale the number of representers based on a
Lipschitz constant.

• In Section 5, we use a central differencing approach on phase oracles of the value function for a numerical
quantum policy gradient algorithm [JCOD23] based on Representer PQCs. We report a query complexity
comparable to Jerbi et al. [JCOD23] but note the potentially lower number of parameters.

• In Section 6, we use analytical quantum policy gradient algorithms which perform quantum multivariate Monte
Carlo schemes on binary oracles of the policy gradient in quantum-accessible environments. We first confirm
that applying quantum analytical policy gradient to kernel-based policies yields a query complexity that is
comparable to Jerbi et al. [JCOD23].

• Section 6.3 proposes two further improvements. For reducing the parameter dimensionality, we propose a
vector-valued kernel matching pursuit. For reducing the variance of the policy gradient due to the variability in
the cumulative reward, we propose Compatible Quantum RKHS Actor-Critic, an approach which performs
analytical quantum policy gradient with an oracle that performs occupancy-based sampling in a quantum
device and includes the critic’s prediction rather than the cumulative reward of the trajectory. Theorem 6.2a
demonstrates that the resulting query complexity depends the maximal deviation from a baseline estimate,
rather than on the maximal cumulative reward. Theorem 6.2b provides an improved result which exploits an
upper bound on the variance of the gradient of the log-policy, and thereby demonstrates how designing smooth
policies such as the Gaussian kernel-based policy can give additional query complexity benefits.

• Section 6.4 proposes Deterministic Compatible Quantum RKHS Actor-Critic, which is based on the determin-
istic policy gradient theorem [SLH+14]. The approach makes use of similar formalisms as its non-deterministic
counterpart, though with the key differences that it is based on state occupancy rather than state-action occu-
pancy, and that the policy gradient takes a different form, leading to a different query complexity result. In
particular, Theorem 6.3 demonstrates that the resulting query complexity depends on the number of repres-
enters and the maximal gradient norm of the critic, which illustrates the importance of techniques such as
kernel matching pursuit and regularisation.



Table 1: Query complexity of policy gradient estimation with PQCs. General notations: A is the action space; rmax
denotes the maximal reward; T is the horizon; d is the parameter dimensionality; γ is the discount factor; and ϵ is the
tolerance for error in the gradient estimate. Specific notations: T is the temperature of the softmax; D is an upper
bound on higher-order derivatives of the policy; ϵQ is the maximal absolute deviation of the critic’s prediction to a
baseline estimate; Bp is a p-norm upper bound on the gradient of the log-policy; N is the number of representers in a
kernel policy; σ∇p is an upper bound on the p-norm on the standard deviations of the partial derivative of the log-policy;
Cp is a p-norm upper bound on the gradient of the critic; and ξ(p) = max{0, 1/2− 1/p} is used for converting across
p-norms.

Algorithm Oracle and estima-
tion

Query complexity

1. Policy gradient with Softmax-PQC [SSB23] Return oracle, single-
qubit parameter shift
rule [SBG+19], and
classical Monte Carlo

Õ
(

T 2r2maxT
2

ϵ2(1−γ)2 )
)

2. Numerical QPG and Raw-PQC [JCOD23] Return oracle,
quantum gradient
estimation via central
differencing [Cor19]

Õ
(√

dDTrmax
ϵ(1−γ)

)

3. Analytical QPG and Softmax-PQC [JCOD23] Analytical gradient
oracle, bounded
quantum multivariate
Monte Carlo (The-
orem 3.3 [CHJ22])

Õ

(
dξ(p)

BpTrmax

ϵ(1− γ)

)

Proposed: Numerical QPG in RKHS cf.2 cf.2 but d = NA

Proposed: Analytical QPG in RKHS cf.3 cf.3 but d = NA

Proposed: Compatible Quantum RKHS Actor-Critic Analytical gradient
oracle, near-optimal
quantum multivariate
Monte Carlo (The-
orem 3.4 [CHJ22])

Õ
(
dξ(p)

ϵQBp

(1−γ)ϵ

)
for d = NA

Õ
(

dξ(p)ϵQσ∇p

(1−γ)ϵ

)
for d = NA

Proposed: Deterministic Compatible Quantum RKHS Actor-Critic cf.3 Õ
(
dξ(p)

Cp

(1−γ)ϵ

)
for d = NA

Our query complexity results compare favourably to other methods to compute the policy gradients of PQCs, as
illustrated in Table 1.

2 Preliminaries

2.1 Markov Decision Processes and classical policy gradient algorithms

The Markov Decision Process (MDP) is the standard task-modelling framework for RL. The framework is defined by a
tuple (S,A, r, γ, P ), where S is the state space,A is the action space, r : S ×A → R is the reward function, γ ∈ (0, 1)
is the discount factor, and P : S ×A → ∆(S) is the unknown true transition dynamics model outputting a distribution
of states within the probability simplex ∆(S) = {P ∈ R|S| : P ⊺1 = 1}. The value of executing a policy from a given
state s ∈ S for T timesteps, where T is often called the horizon, is given by the expected discounted cumulative reward,

V (s) = E

[
T−1∑

t=0

γtr(st, at)|s0 = s, at ∼ π(st), st+1 ∼ P (·|st, at)
]
. (2)



Similarly, the value of executing a policy from a given state-action pair (s, a) ∈ S ×A is formulated as

Q(s, a) = E

[
T−1∑

t=0

γtr(st, at)|s0 = s, a0 = a, at ∼ π(st), st+1 ∼ P (·|st, at)
]
. (3)

A shorthand that will often be used for state action pairs is z = (s, a).

A few additional notations closely related to the transition dynamics are also introduced, namely: P (τ) to denote the
probability of a trajectory of the type τ = s0, a0, . . . , sT−1, aT−1; and Pt(s|s0, π) to denote the probability under
policy π that st = s at time t starting from state s0.

Classical policy gradient algorithms compute the gradient of the value with respect to the policy parameters,

θ = θ + η∇θV (s0) ,

where πθ is the policy parametrised by θ.

For MDPs, an optimal deterministic policy µ∗ : S → A is guaranteed to exist (see Theorem 6.2.7 in [Put94]) and we
devise stochastic policies to explore the state-action space before converging to a (near-)optimal deterministic policy.

2.2 Reproducing Kernel Hilbert Space

A kernel K : X × X → Y is a function that implicitly defines a similarity metric in a feature Hilbert space HK

through feature-maps of the form ϕ(x) = K(·, x). Kernels have the defining property that they are positive definite and
symmetric, such that K(x, y) ≥ 0 and K(x, y) = K(y, x) for all x, y ∈ X . Reproducing kernels have the additional
reproducing property, namely that if f ∈ HK , then f(x) = ⟨f(·),K(·, x)⟩. If a reproducing kernel K spans the Hilbert
space HK , in the sense that span{K(·, x) : x ∈ X} = HK , then HK is called a reproducing kernel Hilbert space
(RKHS).

Operator-valued RKHS: Traditionally, kernel functions are scalar-valued, i.e. Y = R or Y = C. However, the RKHS
can also be formulated to be operator-valued by formulating a kernel function such that K(x, y) outputs a matrix in
CA×A, where A is the output dimensionality. The paper will include two settings, namely the trivial case

K(x, y) = κ(x, y)IA , (4)

where κ is a real- or complex-valued kernel, and the more general case

K(x, y) = κ(x, y)M , (5)

where a matrix M additionally captures scaling factors for each output dimension on the diagonal elements and the
correlations between the output dimensions on non-diagonal elements.

Quantum kernels. Quantum kernels are kernels which have feature-maps in the quantum RKHSH = C2n for some
n-qubit encoding. Tab. 2 provides an overview of a few selected quantum kernels based on [Sch21].

Table 2: Overview of selected quantum kernels and their basic properties, including encoding, space complexity,
and time complexity. We denote the number of qubits of s by n. For vector-valued states, n = kS, where S is the
dimensionality of the state-space and k is the per-dimension precision.

Encoding Kernel Space (qubits) Time

Basis encoding
ϕ : s→ |i(s)⟩⟨i(s)|

Kronecker delta
κ(s, s′) = |⟨i(s)|i(s′)⟩|2 = δs,s′

O(n) O(1)

Amplitude encoding
ϕ : s→ |s⟩⟨s|

Quantum kernel of pure states
κ(s, s′) = |⟨s|s′⟩|2

O(n) O(2n)

Repeated amplitude encoding
ϕ : s→ (|s⟩⟨s|)⊗r

r-power quantum kernel of pure
states
κ(s, s′) =

(
|⟨s|s′⟩|2

)r
O(rn) O(2n)

Rotation encoding
ϕ : s→ |φ(s)⟩⟨φ(s)|,
|φ(s)⟩ =∑1

q0,··· ,qn=0

∏n
k=1 cos(sk)

qk sin(sk)
1−qk |q1, . . . , qk⟩

Variant of squared cosine kernel
κ(s, s′) =

∏n
k=1 | cos(sk − s′k)|2

O(n) not given



2.3 Gradient estimation and approximations

The policy of the RL algorithm will be parametrised by θ, which is a d-dimensional set of variables. Sets of the form
{1, 2, . . . , n} are written as [n] for short. We define the multi-index notation α = (α1, . . . , αn) ∈ [d]n for αi ∈ N+.
The notation is useful for higher-order partial derivatives of the form ∂αf(x) = ∂n

∂α1α2...αn
f(x). We also use the

following notation for truncation with respect to the ℓ2 norm, namely

[[x]]
b
a =

{
x for ∥x∥2 ∈ [a, b]

0 otherwise.

In addition to standard big O notations, we also use OP to denote convergence in probability, i.e. limn→∞ P (|xn −
x| ≥ ϵ) = 0. Moreover, for two positive sequences xn and yn, the notation xn ≍ yn is used to indicated that
C ≤ xn/yn ≤ C ′ for some constants C,C ′ > 0.

2.4 The quantum-classical setup

The above learning representation is implemented in a quantum-classical setup, in which the environment interactions
occur on a quantum device whereas learning parameters are stored and updated on a classical device. The interaction
is assumed to follow the same conventions as in the quantum policy gradient setting, where the agent obtains T -step
trajectories from queries to a set of 5 quantum oracles [JCOD23].
Definition 2.1. Quantum oracles for MDP access. The following 5 types of essential quantum oracles are used:

• Transition oracle OP : |s, a⟩|0⟩ → |s, a⟩⟩∑s′∈S
√
P (s′|s, a)|s′⟩.

• Reward oracle OR : |s, a⟩|0⟩ → |s, a⟩|r(s, a)⟩.

• Initial state oracle Od0 : |0⟩ →∑
s∈S

√
d0(s)|s⟩.

• Quantum policy evaluation (see e.g. Fig. 3) Π : |θ⟩|s⟩|0⟩ → |θ⟩|s⟩∑a∈A
√
π(a|s)|a⟩. The oracle applies the

policy with parameters θ coherently to the superposition over states.

• Trajectory oracle UP : |θ⟩|s0⟩|0⟩ → |θ⟩|s0⟩
∑

τ

√
P (τ)|a0, s1, a1, . . . , sT−1, aT−1⟩,

where P (τ) = π(a0|s0)
∏T−1

t=1 P (st|st−1, at−1)π(at|st). The oracle uses Π andOP to define a superposition
over trajectories.

• Return oracle UR : |τ⟩|0⟩ → |τ⟩|R(τ)⟩. This oracle computes the discounted return of the trajectory
superpositions.

Following [JCOD23], the trajectory oracle UP can be implemented in O(T ) calls to Π and OP , and the return oracle
UR can be implemented in O(T ) calls to OR.

The oracles are then combined as subroutines of a quantum gradient oracle, which returns the gradient of one or more
episodes under the current policy parameters. More specifically, the quantum gradient oracle returns after measurement
a random variable X which has expectation ∇θV (s0), and after several calls an estimate X̄ is formed that is an ϵ-close
approximation to ∇θV (s0).1 The parameter vector θ can then be updated classically according to the policy gradient
update θ = θ + ηX̄ . The quantum circuit is then updated with the new θ for the subsequent episode(s).

2.5 Vector-valued state and action spaces

To represent a rich class of state and action spaces, we represent states using Sk qubit representations for superpositions
over vector-valued states S ⊂ CS , actions using an Ak qubit representation for vector-valued actions A ⊂ CA, and
rewards using a k-qubit representation forR ⊂ R.

In this representation, actions are superpositions of the form |a⟩ =
∑

a′∈A c(a
′)|a′⟩ where

∑
a′∈A |c(a′)|2 = 1

and |a′⟩ = |a′[0][0], . . . , a′[0][k − 1], a′[1][0], . . . , a′[1][k − 1], . . . , a′[A][k − 1]⟩; states are superpositions of the
form |s⟩ = ∑

s′∈S c(s
′)|s′⟩ where

∑
s′∈S |c(s′)|2 = 1 and |s′⟩ = |s′[0][0], . . . , s′[0][k − 1], s′[1][0], . . . , s′[1][k −

1], . . . , s′[S][k − 1]⟩; and rewards are superpositions of the form |r⟩ = ∑
r′∈R c(r′)|r′⟩ where

∑
r′∈R |c(r′)|2 = 1

1Consistent with the notation of [JCOD23], we focus on deterministic initial state s0 but note that the extension is trivially
obtained by using a stochastic oracle for Od0 .



and |r′⟩ = |r′[0], . . . , r′[k − 1]⟩.2 As in the above, the remainder of the document will use the double square bracket
notation to indicate the dimension and qubit index in the first and second bracket, respectively. When using a single
bracket, e.g. s[j], it is assumed the quantity is one-dimensional. A related notation that will be used is |0⟩ instead of
|0⟩⊗n when this is clear from the context.

3 Background

Our work will make use of formalisms introduced by three prior works. The first set of formalism is related to the
quantum policy gradient algorithms due to Jerbi et al. [JCOD23], who use the above-mentioned quantum oracles to
efficiently compute the policy gradient. The second set of formalisms pertains to the work by Lever and Stafford [LS15],
which analyses Gaussian policies within an operator-valued RKHS framework and proposes an actor-critic algorithm
called Compatible RKHS Actor-Critic. The third set of formalisms is based on the work of Bagnell and Schneider
[BS03], which formulates softmax policies within RKHS and proposes to use REINFORCE.

3.1 Quantum policy gradient

Jerbi et al. propose quantum policy gradient algorithms for numerical and analytical gradient estimation from the
oracles mentioned in Definition 2.1. They apply a variant of the REINFORCE algorithm, which is based on the policy
gradient theorem [SB18] and formulates the policy gradient as

∇θV (s0) = E

[
T−1∑

t=0

∇θ log(π(a|s))
T−1∑

k=0

rk

]
. (6)

3.1.1 Quantum policies

As trajectories are sampled within a quantum environment, the policy π is formulated as a PQC. Previous work Jerbi et
al. [JGMB21, JCOD23] formulate three variants of PQCs to support their derivations.
Definition 3.1. Raw-PQC. The Raw-PQC [JGMB21, JCOD23] defines

πθ(a|s) = ⟨Pa⟩s,θ , (7)
where Pa is the projection associated to action a such that

∑
a Pa = I, PaPa′ = δa,a′Pa, and the expectation

⟨Pa⟩s,θ = ⟨ψs,θ|Pa|ψs,θ⟩ is the probability of being projected onto the basis state |a⟩.
Definition 3.2. Softmax-PQC. The Softmax-PQC [JGMB21] defines the policy as

πθ(a|s) =
eT ⟨Oa⟩s,θ

∑
a′∈A e

T ⟨Oa⟩s,θ . (8)

The observables in Eq. 8 are given by

⟨Oa⟩s,θ = ⟨ψs,θ|
Nw∑

i=1

wiHa,i|ψs,θ⟩ ,

where wa,i ∈ R and Ha,i is a Hermitian operator. Both w and ϕ are trainable parameters.
Definition 3.3. Softmax-1-PQC. The Softmax-1-PQC [JCOD23] is an instance of Softmax-PQC for which ϕ = ∅ and
for all a ∈ A, Ha,i = Pa,i is a projection on a subspace indexed by i such that

∑Nw

i=1 Pa,i = I and Pa,iPa,j = δi,jPa,i

for all i = 1, . . . , Nw.

3.1.2 Numerical policy gradient

To estimate the policy gradient in Eq. 6 efficiently, i.e. with minimal query complexity, Jerbi et al. propose numerical
gradient estimation based on quantum gradient estimation of Gevrey functions, which is based on central differencing
[Cor19].
Definition 3.4. The Gevrey condition is a smoothness condition according to which, for some parameters M > 0,
c > 0, and σ ∈ [0, 1], we have that

|∂αV (θ)| ≤ M

2
cp(p!)σ (9)

for all p ∈ N0, θ ∈ Θ, and α ∈ [d]p.
2While we assume the reward function is deterministic, the rewards are in superposition due to the dependency on the trajectory

superposition.



Lemma 3.1. Gevrey value function (Lemma F.1 in Jerbi et al. [JCOD23]). The value V (θ) := V (s0; θ) as a function
of the policy parameters satisfies the Gevrey condition with σ = 0, M = 4rmax

1−γ , and c = DT 2 where D is an upper
bound on the higher-order derivative of the policy:

D = max
p∈N0

Dp

Dp = max
θ∈S,α∈[d]p

∑

a∈A
|∂απθ(a|s)| , (10)

where α ∈ [d]p.
Definition 3.5. A phase oracle of the value function (Lemma 2.3 and Theorem 3.1 in [JCOD23]; Corollary 4.1
[GAW19]) encodes the phase of the value function V (s) =

∑
τ P (τ)R(τ) into the input register, according to

OV : |θ⟩|s⟩ → |θ⟩eiṼ (s)|s⟩ ,

where Ṽ (s) = V (s)(1−γ)
rmax

∈ [−1, 1] is the normalised value, and θ parametrises the policy (and thereby P (τ)). The
phase oracle can be obtained up to ϵ-precision within O(log(1/ϵ)) queries to a probability oracle of the form:

OPV : |θ⟩|s⟩|0⟩ → |θ⟩|s⟩
(√

Ṽ (s)|ψ0⟩|0⟩+
√

1− Ṽ (s)|ψ1⟩|1⟩
)
.

Following the Gevrey smoothness with the above parameters for σ, M , and c, as well as additional phase oracle access
to V (s0), quantum gradient estimation of Gevrey functions [Cor19] provides precise estimates with limited query
complexity, using differencing and inverse QFT.
Lemma 3.2. Quantum policy gradient estimation of Gevrey value functions (Theorem 3.1 in Jerbi et al. [JCOD23]).
Quantum gradient estimation computes an ϵ-precise estimate of∇θV (s0) such that ||X̄−∇θV (s0)||∞ ≤ ϵ with failure
probability at most δ within

Õ
(√

d
DT 2rmax

ϵ(1− γ)

)
, (11)

yielding a quadratic improvement over the query complexity of the classical numerical gradient estimator (see Lemma
G.1 in [JCOD23] and Appendix A):

Õ
(
d

(
DT 2rmax

ϵ(1− γ)

)2
)
. (12)

queries to UP and UR (i.e. O(T ) time steps of interaction with the quantum environment).

To demonstrate Lemma lem: QPG Gevrey, Jerbi et al. transform the return oracle into a probability oracle and then to
a phase oracle of the value function. Applying quantum gradient estimation of Gevrey functions (Algorithm 3.7 and
Theorem 3.8 of [Cor19]) computes an ϵ-precise estimate of ||X̄ −∇θV (s0)||∞ ≤ ϵ with failure probability at most δ
within

Õ
(
Mcdmax{σ,1/2}

)
(13)

queries. Filling in σ, M , and c into Eq. 13 according to Lemma 3.1 yields the desired result.

3.1.3 Analytical policy gradient

Jerbi et al. further provide an alternative policy gradient estimation based on quantum multivariate Monte Carlo
[CHJ22] over a binary oracle of an analytical form of the quantity being sampled in REINFORCE (see Eq. 6), i.e.
X(τ) =

∑T−1
t=0 ∇θ log(π(a|s))

∑T−1
k=0 γ

krk, where τ is the trajectory.

Definition 3.6. A binary oracle of a quantity X ∈ Rd obtained from a quantum experiment (see Definition 2.14.1 and
2.14.2 in [JCOD23]) is given by

UX : |0⟩ →
∑

τ

√
P (τ)|τ⟩|X(τ)⟩ ,

where τ is a random variable, and |X(τ)⟩ encodes X(τ) into a binary representation.

Applying quantum multivariate Monte Carlo can yield quadratic improvements compared to classical estimators, as
shown in the following Lemma.



Lemma 3.3. Quantum multivariate Monte Carlo for REINFORCE (Theorem 4.1 of [JCOD23]) QBounded (Theorem
3.3 [CHJ22]) yields an ϵ-precise estimate of∇θV (s0) w.r.t ℓ∞-norm within

O
(
dξ(p)

BpTrmax log(d/δ)

ϵ(1− γ)

)
(14)

queries to UP and UR (i.e. O(T ) time steps of interaction with the quantum environment), where ξ(p) = max({0, 1/2−
1/p}), while the classical policy gradient has query complexity following from Appendix A

O
((

BpTrmax log(d/δ)

ϵ(1− γ)

)2
)
. (15)

This yields a full quadratic speedup for p ∈ {1, 2}, so finding a bound on B1 or B2 is important for a PQC formulation
similar to the bound of B1 ≤ 2 for Softmax-1-PQC.

3.2 Gaussian RKHS policies and Compatible RKHS Actor-Critic

Lever and Stafford [LS15] formulate Gaussian RKHS policies that are parametrised by N policy weights β1, . . . , βN ∈
A and N policy centres c1, . . . , cN ∈ S for i = 1, . . . , N . The mean µ(s) for given state s ∈ S is defined based on an
operator-valued kernel K,

µ(s) =

N∑

i=1

K(ci, s)βi , (16)

which is an action in A. The Gaussian RKHS policy is then defined by the Gaussian distribution with mean µ(s) and
covariance matrix Σ:

π(a|s) = N (µ(s),Σ)

=
1

Z
exp

(
−1

2
(µ(s)− a)⊺Σ−1(µ(s)− a)

)
. (17)

Lever and Stafford propose Compatible RKHS Actor-Critic, an algorithm which combines a functional policy gradient,
sparsification of policy weights and centres, and an actor-critic formulation to devise an efficient system for non-
parametric optimisation within operator-valued RKHS. The functional gradient is based on the Fréchet derivative, a

bounded linear map Dg|µ : HK → R with lim∥h∥→0
∥g(µ+ h)− g(µ)∥R −Dg|µ(h)

∥h∥HK

= 0. Specifically, their result

provides (see Appendix B)

Dg|µ :h→ (a− µ(s))Σ−1h(s)

= ⟨K(s, ·)Σ−1(a− µ(s)), h(·)⟩
for any operator-valued kernel K, such that the gradient is given by

∇µ log(π(a|s)) = K(s, ·)Σ−1(a− µ(s)) . (18)

This being a functional gradient with respect to µ, the ∇µ log(π(a|s)) ∈ HK and is of the same form as the function
µ(·) in Eq. 16.

To maintain a sparse set of centres and weights, Lever and Stafford propose a variant of kernel matching pursuit
[VB02]. More specifically, they propose a vector-valued adaptation of the technique of Mallat and Zhang [MZ93] in
which feature vectors {K(ci, ·)}Ni=1 and weights {βi}Ni=1 are stored based on the error of its corresponding function
approximator µ̂. Using the technique, one greedily and incrementally adds the next centre ci and weight βi, when
added, yields the lowest mean squared error (MSE):

min
c,β

∑

si∈I⊂S
||µ(si)− (µ̂+ βK(c, : ))(si)||22 , (19)

where basis functions K(c, : ) are stored from observed states c ∈ S and policy weights β ∈ A are stored based on
observed actions. The resulting estimator approximates the original policy µ with a number of basis functions of at
most N , where a lower number is obtained when meeting a stopping criterion, e.g. based on an MSE improvement
below a threshold ϵµ. Adaptively restricting the number of basis functions using such a threshold allows tailoring the
complexity of the function approximator µ̂ to the complexity of µ.



In this non-parametric scheme, the algorithm defines the policy gradient as

∇µV (s0) =

∫
ν(z)Q(z)∇µ log(πµ(s, a))dz

=

∫
ν(z)Q(z)K(s, ·)Σ−1(a− µ(s))dz (20)

where z ∈ S ×A and

ν(z) :=

T−1∑

t=0

γtPt(z|s0, a0, π) (21)

represents the occupancy measure of the state-action pair z by summing its discounted probability at time t based on
the policy parameterised by µ and Σ. The integral is then approximated based on samples from a related occupancy
distribution (1− γ)ν(s, a).
To estimate Q, a critic Q̂πµ

(z) is formed as a compatible function approximator of Q(s, a) using a kernel regression
technique (e.g. kernel matching pursuit [VB02]) with the compatible kernel

Kµ((s, a), (s
′, a′)) := K(s, s′)(a− µ(s))⊺Σ−1(a′ − µ(s′)) .

This leads to a critic of the form
Q̂(s, a) = ⟨w,∇µ log(πµ(s, a))⟩ , (22)

where w ∈ HK and∇µ log(πµ(s, a)) = K(s, ·)Σ−1(a− µ(s)) ∈ HK . The objective of the critic is to minimise the
mean squared error:

Q̂(s, a) = argmin
Q̂∈HKµ

∫
ν̃(z)

1

1− γ
(
Q(z)− Q̂(z))

)2
dz , (23)

where Q(z) = E[R(τ |s, a)].
Similar to the proof of Lever and Stafford [LS15], Appendix C.1 demonstrates that indeed the critic Q̂ as defined in
Eq. 22 is compatible, in the sense that it can replace Q in Eq. 20 and yield an exact equality to∇µV (s0):∫

ν(z)Q(z)∇µ log(π(s, a))dz =

∫
ν(z)Q̂(z)∇µ log(π(s, a))dz . (24)

The Compatible RKHS Actor-Critic implementation can be interpreted as a natural policy gradient algorithm, which
comes with the benefit of being robust to choices of the coordinates by taking into account the curvature of the manifold
that they parametrise. We give a proof of the natural gradient interpretation in Appendix C.2 with reasoning based on a
related proof by Kakade [Kak02].

3.3 Softmax RKHS policy

A second kernel-based policy of interest is the softmax formulation of Bagnell and Schneider (2003) [BS03] to the
quantum RL setup. It is formulated as

π(a|s) = 1

Z
eT f(s,a) (25)

where Z =
∑

a∈A e
T f(s,a), T > 0 is the temperature parameter, f : S ×A → R is a state-action dependent function

in RKHS according to

f(s, a) =

N∑

i=1

βiK((si, ai), (s, a)) , (26)

for βi ∈ R and Z =
∑

a e
T f(s,a). That is, now the policy centres are state-action pairs and the policy weights are

scalars.

3.4 Convergence rate of kernel ridge regression

As already seen in Section 3.2, function approximation using kernel regression is a key component of Compatible
RKHS Actor-Critic. For some classes of kernels, optimal convergence rates can be demonstrated for kernel regression
methods, and for kernel ridge regression in particular. Kernel ridge regression optimises the objective

f̂ = argmin
g

1

n

n∑

i=1

(yi − g(xi))2 + λn ∥g∥2HK
,



where g =
∑n

i=1 βiκ(x, xi) in line with the representer theorem. Its optimal coefficients are given by β = (K +
nλnIn)−1Y , where K is the Gram matrix and Y = (y1, . . . , yn)

⊺.

Now we turn to reviewing useful results about kernel regression that can be used to assess the convergence rate of the
critic. We will denote X as the input space and f : X → Y as a function in the RKHS, where for our purposes X = S
or S ×A and Y = R.

First we provide the definition of a Sobolev space and quasi-uniform sequences, which are the two assumptions required
for the convergence rate proof.
Definition 3.7. Sobolev space. A Sobolev space H l(X ) with smoothness degree l is a Hilbert space defined by

H l(X ) = {f ∈ L2(X ) : ∂αf ∈ L2(X ) for |α| ≤ l} ,

where α is a multi-index and ∂αf = ∂n

∂α1α2...αn
f . The RKHS spanned by the Matérn kernel in Eq. 2.9 of [TWJ20] is an

example Sobolev space.
Definition 3.8. Quasi-uniform sequence (Definition 2.5 in [TWJ20] and Example 3.2 in [WJ22]). A sequence
x1, . . . , xn is quasi-uniform if there exists a universal constant U > 0 such that for all n > 0

hn/qn ≤ U ,
where hn = maxx∈X mini ∥x− xi∥2 is the fill distance and qn = mini,j ∥xi − xj∥2 is the separation distance.

With these definitions in place, we now turn to reviewing an existing result on L2 norm convergence rates, which we
will use to assess the number of samples needed for obtaining ϵ-precise critic functions.
Lemma 3.4. Convergence rates for kernel ridge regression (Theorem 5.3 and 5.4 in [WJ22]). Let f ∈ H l(X ) be a
function in a Sobolev space over X , a convex and compact subset of Rd, and let l > d/2. Moreover, let the samples
x1, . . . , xn be quasi-uniform in X and let yi = f(xi) + ei, where the random errors (ei) are sub-Gaussian. Define the
kernel ridge regression estimator

f̂ = argmin
g

1

n

n∑

i=1

(yi − g(xi))2 + λn ∥g∥2HK
,

where λn ≍ n−
2l̂

2l+d . Moreover, let l̂ ≥ l/2 be the smoothing factor in the RKHS of the estimator, Hκ, where
κ : X ×X → R is a kernel that is subject to algebraic decay conditions (see C2 and C3 [WJ22]; e.g. a Matérn kernel).
Then the estimator f̂ has L2 error given by

∥∥∥f̂ − f
∥∥∥
L2

= O
(
n−

l
2l+d

)
. (27)

4 Quantum kernel policies

With the aim of designing representer theorem based policies, we now design two types of parametrised quantum
circuits. A first class of circuits, further called Representer PQCs, implements the kernel coherently within the circuit
without requiring measurement, and applies this several times for different policy centres to fully form the representer
formula within the circuit (i.e. the expectation of the circuit reduces to a representer formula). Circuits in this class are
PQCs which apply directly on rotation angles in the circuit, and a subset of these are suitable for numerical optimisation
without any policy estimation. A second class of circuits, called Gaussian quantum kernel policies, takes the classical
mean, obtained from the representer formula, and covariance matrix parameters, formulates the associated angles, and
then prepares the wave function accordingly. These are proposed for analytical gradient based optimisation.

4.1 Representer PQCs

We formulate a simple proof-of concept based on the Kronecker delta kernel κ(s, s′) = δs,s′ . Due to simply requiring
to compute equality in the computational basis, the kernel can be implemented as multi-controlled gates. Rather than
using a multi-controlled X-gate to explicitly compute the kernel before applying policy weights, a multi-controlled
RY gate is computed. An exemplary circuit is shown in Fig. 1. Note that if the rotation angle for any given state is
equal to either π or 0, the policy becomes deterministic for that state, while values in between yield stochastic policies
(or equivalently, a floating point expected value) with π/2 yielding a uniform superposition. Below we present a few
policy formulations using this circuit, with varying properties in terms of applicability. Based on the distinction between
Raw-PQCs and Softmax-PQCs, they vary in their applicability, in terms of coherent computation within a numerical



|0⟩ : RY (θ1,0) RY (θ1,1) RY (θ1,2) RY (θ1,3)

|0⟩ : RY (θ2,0) RY (θ2,1) RY (θ2,2) RY (θ2,3)

|s[0]⟩ : • • • •
|s[1]⟩ : • • • •

(a) Kronecker delta

|0⟩ : RY (θ1,0) RY (θ1,1) RY (θ1,2) RY (θ1,3)

|0⟩ : RY (θ2,0) RY (θ2,1) RY (θ2,2) RY (θ2,3)

|0⟩ :
H

• • • •
|0⟩ : • • • •
|0⟩ :

B†
1A|0⟩ :

|0⟩ :
B†

2A|0⟩ :
|0⟩ :

B†
3A|0⟩ :

|0⟩ :
B†

4A|0⟩ :

(b) General inner product subcircuit

Figure 1: Implementation of a Representer PQC with two-qubit states and two-qubit actions. A separate rotation angle
is reserved for each action qubit. a) Kronecker delta kernel is implemented such that for each possible eigenstate, a
separate set of rotation angles is applied to the action qubits. b) Subcircuit applied to a particular eigenstate s ∈ S to
generalise the Representer PQC to general kernels based on an inner product operator. Different such subcircuits are
then joined into a common circuit for superposition states using multi-control. Note: for implementing the quantum
policy evaluation oracle Π, the measurements are omitted.

gradient optimisation versus the need for estimating of the policy and the log-policy gradient within an analytical
gradient optimisation (see e.g. Appendix B of Jerbi et al. [JGMB21] and [SSB23]). For instance, for ℓ∞ error ϵ > 0

and failure probability at most δ, gradient computations are O( |A|
ϵ2 log(dδ )) [SSB24].

Representer Raw-PQC. Having defined the PQC, the Representer PQC can be formulated as a special case of the
Raw-PQC, suitable for optimisation with numerical gradient without estimating π or ∇θ log(π(a|s)), as the circuit can
be computed coherently when removing the measurements in Fig. 1. The associated policy is defined based on the
observable ⟨Pa⟩θ,s = ⟨ψθ,s|Pa|ψθ,s⟩ as

π(a|s) = ⟨Pa⟩θ,s , (28)

where Pa is the projection associated to action a such that
∑

a Pa = I, PaPa′ = δa,a′Pa.

While Fig. 1a shows the Kronecker delta kernel, the concept can be generalised using the approach of Markov et al.
[MSRG22], which prepares the inner product in the amplitude of |0⟩ based on two operators A and B such that

|φA⟩ = A|0⟩ =
2n−1∑

i=0

cA(i)|i⟩

|φB⟩ = B|0⟩ =
2n−1∑

i=0

cB(i)|i⟩

B†A|0⟩ = ⟨φA|φB⟩|0⟩+
2n−1∑

i=1

c(i)|i⟩ .



A subcircuit is formed for each s ∈ S in which all the inner products ⟨ϕ(s)|ϕ(ci)⟩ are then computed for all centres
c1, . . . , cN . One such sub-circuit is shown in Fig. 1b; the different sub-circuits are joined by multi-control (analogous
to Fig. 3).

Representer Softmax-PQC. Similarly, the Representer PQC can also be formulated to form a Softmax-PQC, which is
suitable for optimisation with analytical gradient as it requires subsequent estimation of both π and ∇θ log(π(a|s)). To
form this PQC, one formulates the observable

⟨Oa⟩s,θ = ⟨ψθ,s|
Nw∑

i=1

wiHa,i|ψθ,s⟩ ,

where wa,i ∈ R, Ha,i is a Hermitian operator, and w and ϕ are trainable parameters. One then uses such an observable
for all a ∈ A to compute Eq. 8, leading to a Representer Softmax-PQC. Analogous to Softmax-1-PQC, the Representer
Softmax-1-PQC further restricts Ha,i = Pa,i to be a projection on a subspace indexed by i such that

∑Nw

i=1 Pa,i = I
and Pa,iPa,j = δi,jPa,i for all i = 1, . . . , Nw.

Representer Softmax-PQC (Bagnell and Schneider style). Note that with additional controls on eigenactions a ∈ A
and an alternative interpretation of the outputs in terms of f(s, a) rather than an action, a representer formula with
kernel of the form K((s, a), (s′, a′)) can be incorporated within the circuit to optimise the function f from Eq. 26. This
yields a convenient analytical form for the gradient following Bagnell and Schneider [BS03] (see Appendix D for a
proof),

∇f log(πf (a|s)) = T
(
K((s, a), ·)− Ea′∼πf (·|s)K((s, a′), ·)

)
. (29)

Thereby, this formulation avoids the additional computations required to estimate ∇θ log(π(a|s)), although still
requiring to estimate π.

4.2 Gaussian quantum kernel policies

The Gaussian quantum kernel policy (Gauss-QKP) is a policy that extends the formulation of Lever and Stafford
[LS15] (see Eq. 17) by formulating it in terms of a quantum wave function. A benefit of this formulation is that gradient
computations for ∇β log(π(a|s)), and even Fisher information computations if needed, are analytically given without
computational expense.

Upon policy updates, the wave function representing the stochastic policy π needs to be updated. Using the mean action
µ and the covariance matrix, Σ, a Gaussian policy can be constructed within a quantum circuit. One option is to use a
general-purpose wave function preparation techniques, e.g. [SBM06]. However, more special-purpose techniques for
Gaussian wave function preparation, such as the technique proposed by Kitaev and Webb [KW08], are available.

To implement the technique by Kitaev and Webb for a given state s ∈ S and a single dimension, we use the circuit
given in Fig. 2. First, note that amplitudes for a one-dimensional Gaussian with mean m and standard deviation v can
be constructed based on integers as

c(a) =
1√

F (m, v)
e−

1
2v2 (a−m)2

where F (m, v) =
∑∞

n=−∞ e(n−m)2v2 which is related to the third Jacobi theta function, and which implies
∑

a

c2(a) =
∑

a

1

F (m, v)
e−

1
v2 (a−m)2 = 1 .

The rotation angle for consequent qubits is then given recursively by α = cos−1(
√
F (m/2, v/2)/F (m, v)), leading to

the circuit in Fig. 2.

To extend this to the multi-dimensional Gaussian, the state to prepare becomes

|ψµ,Σ⟩ = C
∑

a∈A
e−

1
2 ã

⊺Σ−1ã|a⟩

= C
∑

a∈A

A−1∏

i=0

e−
1
2Diã[i]

2 |a⟩

= C

A⊗

i=1

(∑

a∈A
e−

1
2Diã[i]

2 |a[i]⟩
)

(30)



|0⟩ : RY (θ1) • • •
|0⟩ : RY (θ2,0) RY (θ2,1) • •
|0⟩ : RY (θ3,0) RY (θ3,1) RY (θ3,2) RY (θ3,3)

Figure 2: circuit for a given state s, which is parametrised by m := µ(s) and standard deviation v :=
√

Σ(s),
where θi,j represents the rotation angle for the i’th qubit and j represents the control state. For instance,
θ2,0 = 2 cos−1(

√
F (mi/2, vi/2)/F (mi, vi)) corresponds to the angle when the first qubit is |0⟩ while θ2,1 =

2 cos−1(
√
F ((mi − 1)/2, vi/2)/F (mi, vi)) corresponds to the angle when the first qubit is in state |1⟩. Note: the

measurements are useful for defining the policy statistics but are removed when calling the circuit coherently for
quantum policy evaluation Π (e.g. for the trajectory oracle).

Figure 3: The policy evaluation oracle Π is formed by calling multiple Gaussian wavefunction sub-circuits each
controlled by a unique state. The figure illustrates this for a one-dimensional, two-qubit state space and a one-
dimensional, six-qubit action space.

where C2 =
√
detΣπ−A/2, Di = Σ−1

ii and ã = a−m. This can be implemented with a larger circuit where each of
the dimensions is performed independently but completely analogous to Fig. 2.

Having defined its wave-function, the Gaussian quantum kernel policy is defined based on the observable ⟨Pa⟩θ,s =
⟨ψΣ(s),µθ(s)|Pa|ψΣ(s),µθ(s)⟩ as

π(a|s) = ⟨Pa⟩θ,s , (31)
where Pa is the projection associated to action a such that

∑
a Pa = I, PaPa′ = δa,a′Pa.

To define the oracle Π, which computes actions coherently, one needs to condition on all the states, which yield different
µ(s) and potentially different Σ(s), and therefore rotation angles θ(s). To this end, we formulate a circuit, shown in
Fig. 3, with sub-circuits such as those in Fig. 2 each of which is controlled upon its respective state.

4.3 The number of policy centres

The number of policy centres, as determined by non-parametric optimisation or a priori choice, determines the
expressiveness of the above-mentioned kernel-based policies. The expressiveness of the Gauss-QKP can be characterised
based on the Lipschitz constant L, as shown in the claim below, and helps to determine an upper bound on the number
of representers (i.e. policy weights and centres).
Claim 4.1. Lipschitz continuity and the number of parameters. Let κ : X × X → R be a real-valued kernel, let
µ(x) :=

∑N
i=1 βiκ(xi, x) ∈ Hκ and let L be a Lipschitz constant such that all pairs x, x′ ∈ X satisfy

∥µ(x)− µ(x′)∥1 ≤ L ∥x− x′∥1 .
Then the number of policy centres N for representing µ is upper bounded by

N = O
(

Lϵk
amaxκmax

)
(32)

where ϵk = 2−k is the finite per-dimension precision, amax ≥ maxa∈A ∥a∥1, and κmax ≥ maxx,x′∈X κ(x, x′).

Proof: The proof of this claim is given in Appendix E.

5 Numerical policy gradient

For numerical gradient estimation, we use the central differencing algorithm by Cornelissen [Cor19] as applied to the
value function in [JCOD23]. After highlighting the query complexity of Gauss-QKP and Softmax-QKP making use of



REINFORCE under this estimation scheme (Section 5.2), we discuss different parametrisations, including the kernel
parameters as in Section 7.2 or the policy weights as in Section 7.1.

The central differencing technique is applied to the value function as a function of the parameters. We first illustrate the
technique based on a one-dimensional parameter. To simplify the notation, we will use the shorthand V (θ) := V (s0; θ).
The technique is based on formulating a Taylor expansion with the Lagrangian formulation of the remainder:

V (θ + h) = V (θ) + V ′(θ)h+ · · ·+ V (k−1)

(k − 1)!
(θ)hk−1 + V (k)(ξ)hk ,

for some ξ ∈ [θ, θ + h] and h > 0. For k = 2, such a formulation leads to first-order central differencing, where

V ′(θ) =
V (θ + h)− V (θ − h)

2h
+
V (k)(ξ1)− V (k)(ξ2)

4
h ,

where ξ1 ∈ [θ, θ + h] and ξ2 ∈ [θ − h, θ]. Generalising to higher orders where k > 2, a so-called central differencing
scheme is defined according to

c
(2m)
l =

1 for l = 1
(−1)l+1(m!)2

l(m+l)!(m−l)! otherwise

for all l = −m,−m+ 1, . . . ,m− 1,m where m = ⌊k−1
2 ⌋. These coefficients are then applied analogously to derive a

central differencing rule. This leads to the following derivative

V ′(θ) =
m∑

l=−m

c
(2m)
l V (θ + lh)

h
+

m∑

l=−m

c
(2m)
l V (k)(ξ)lkhk−1 , (33)

where the first term is the estimate V(2m)(θ) and the second term is the Lagrangian remainder Rk
V .

5.1 Quantum gradient estimation of Gevrey functions

The technique by Cornelissen [Cor19] as applied to gradient of the value function can be summarised as follows:

1. Define R depending on Gevrey parameters c, d, and σ.
2. Repeat for j = 1, . . . , Nx = O(log(d)):

(a) Formulate a grid G within a hypercube with edge length R centred around θ (the current parameter) and
form a uniform superposition,

|ψ1⟩ =
1√
2kd

∑

θ′∈G

|θ′⟩ , (34)

where k is the number of qubits per dimension. Without loss of generality, zero-mean parameters such
that parameters are centred around the current parameters θ = 0.

(b) Apply a phase oracle of the form

OV(2m),G : |θ′⟩ → 1√
2kd

∑

θ′∈G

einV(2m)(θ
′)|θ′⟩

n = O(d1/p

Rϵ ) times. Note that this oracle can be constructed from the phase oracle in Definition 3.5 due
to the relation

einV(2m)(θ) =

m∏

l=−m

einc
(2m)
l V (lθ) .

(c) Due to the linear approximation V(2m)(θ
′) ≈ V (θ) +∇θV (θ)θ′ and dropping the unimportant constant

phase factor V (θ) (since QFT is invariant to phase shifts), we obtain

|ψ2⟩ =
1√
2kd

∑

θ′∈G

ein∇θV (θ)θ′ |θ′⟩

(d) Converting to a sum over qubits and applying a k-qubit inverse QFT yields the slope of the phase as a
function of the parameter. Applied to each dimension individually and combining results, this yields

|ψ3⟩ ≈ |round
(
nR

2π
∇θV (θ)

)
⟩ .

(e) Measure and renormalise by factor 2π
nR to obtain Xj = ∇θV (θ).

3. Define X̄ = mean(X1, . . . , XNx
)



5.2 Quadratic improvements for numerical policy gradient

Since quantum gradient estimation of Gevrey functions scales in query complexity with the higher-order gradient of the
policy, we first derive an upper bound on the higher-order gradient of the policy for the Representer PQC of Sec. 4.1.
Lemma 5.1. Bound on the higher-order gradient of the policy. Let π be a Representer Raw-PQC as in Eq. 28
implemented according to Fig. 1b. Then

D = max
p

Dp ,

where
Dp = max

s∈S,α∈[d]p

∑

a∈A
|∂απ(a|s)| ,

is bounded by D ≤ 1.

Proof:
Noting it takes the form of a Raw-PQC, and the fact that the RY gates have ±1 eigenvalues, the remainder of the proof
is analogous to that of Jerbi et al. [JCOD23]. The full proof is given in Appendix F.

We apply the quantum Gevrey estimation as summarised in 5.1. Using the upper bound D, we confirm the quadratic
improvements for numerical policy gradient also hold in the context of Representer PQCs.
Theorem 5.1. Quadratic improvement for Representer Raw-PQCs under numerical policy gradient. Let π be the
policy formed from a Representer Raw-PQC, let δ > 0 be the upper bound on the failure probability, and let ϵ > 0
be the tolerable ℓ∞ error on the policy gradient. Then with probability at least 1− δ, its quantum numerical policy
gradient requires

n = Õ
(√

d

(
rmax

ϵ(1− γ)T
2

))
(35)

O(T ) steps of interactions are required. This yields a quadratic improvement over classical estimators under general
classical policy formulations (including but not limited to Gaussian and softmax policies).

Proof:
The classical algorithm applies multivariate Monte Carlo to the above central differencing algorithm, independently
for each parameter dimension. The resulting query complexity can be bounded using Theorem 3.4 in [Cor19] and
derivations in Appendix F and G of [JCOD23] (see Appendix G for a summary); that is,

n = Õ
(
d

(
rmax

ϵ(1− γ)DT
2

)2
)
.

For the quantum algorithm, we use quantum Gevrey estimation as summarised in Section 5.1. In particular, we follow
its application according to Theorem 3.1 of Jerbi et al. [JCOD23], where the phase oracle OV is constructed from
a probability oracle OPV as defined in Definition 3.5. To obtain the probability oracle, one rotates the last qubit
proportional to the return, obtaining the state

|θ⟩
∑√

P (τ)|τ⟩|R(τ)⟩
(√

R̃(τ)|0⟩+
√

1− R̃(τ)
)
,

which reduces to

|θ⟩
∑√

Ṽ (s0)|φ0⟩|0⟩+
√
1− Ṽ (s0)|φ1⟩|0⟩ ,

where R̃(τ) = (1−γ)R(τ)
rmax

and Ṽ (s0) = (1−γ)V (s0)
rmax

. Due to the Gevrey value function parameters c = DT 2,
M = 4 rmax

1−γ , and σ = 0 (see Lemma 3.1), we obtain

n = Õ
(
Mcdmax{σ,1/2}

ϵ

)

n = Õ
(√

d

(
rmax

ϵ(1− γ)DT
2

))
.

For Representer Raw-PQCs, note that D ≤ 1 following Lemma 5.1. Therefore, the factor D vanishes in the query
complexity, yielding Eq. 35. Since the classical policy was arbitrarily chosen, this represents a quadratic speedup as
claimed.

While the optimisation scheme comes with comparable quadratic improvement, a reduction in the number of parameters
is further possible if the optimal deterministic policy µ∗ is a Lipschitz continuous function.



6 Analytical policy gradient

As a second class of techniques, we use analytical policy gradient techniques on the policy weights based on quantum
multivariate Monte Carlo [CHJ22].

We first summarise how to use quantum multivariate Monte Carlo algorithm for computing the policy gradient before
moving on to specific analytic quantum policy gradient algorithms.

As two warm-up examples, we consider two examples using REINFORCE, which is based on the analytical form of the
policy gradient theorem [JCOD23, PS08],

∇θV (s0) = E

[
T−1∑

t=0

∇β log(π(a|s))
T−1∑

t′=0

γtrt

]
. (36)

These examples directly reuse Lemma 3.3 and we further provide upper bounds B1 to highlight the feasibility of
kernel-based QKPs to yield quadratic improvements over any classical policy.

Following these warm-up examples, we will prove the query complexity of two quantum actor-critic algorithms, which
have oracles closely related to occupancy measures and which have different policy gradient updates.

6.1 Quantum multivariate Monte Carlo

The quantum multivariate Monte Carlo technique [CHJ22] generalises univariate techniques [Mon17] to multiple
dimensions and the multivariate technique by van Apeldoorn [vA21] to compute the expected value over vectors
depending on a random variable rather than over mutually exclusive unit vectors. The technique requires a binary oracle
for X , which we denote UX (see Definition 3.6). The technique allows to estimate the expectation E[X] based on
sampled trajectories, yielding an ϵ-precise policy gradient. The basic algorithm, called QBounded (Theorem 3.3 in
[CHJ22]), works under the condition of a bounded ℓ2 norm of E[∥X∥2] ≤ B. It is the same algorithm as was used in
the analysis of Jerbi et al. (Theorem‘4.1 in[JCOD23]) and can be summarised for our purposes in the following steps:

1. Define a grid G = { j
m − 1

2 + 1
2m : j ∈ {0, . . . ,m− 1} ⊂ (−1/2, 1/2)d, where m = 2⌈log(

8πn
αB log(d/δ)

)⌉ is the
number of grid points per dimension and d is the dimension ofX . The grid represents vectors x ∈ G to be used
within the directional mean ⟨x,E[X]⟩, where for example E[X] = E

[∑T−1
t=0 ∇β log(π(at|st))

∑T−1
t′=0 γ

t′rt′
]

for traditional REINFORCE.
2. For j = 1, . . . , Nx = O(log(d/δ)):

(a) Compute a uniform superposition over the grid:

|ψ1⟩ =
1

md/2

∑

x∈G

|x⟩ . (37)

(b) Compute a directional mean oracle such that within Õ
(
m
√
B log2(1/ϵ)

)
queries to UX , a state |ψ2⟩ is

formed such that ∥∥∥|ψ2(x)⟩ − eimE[[[ζ⟨x,X⟩]]10]|0⟩
∥∥∥
2
≤ ϵ ,

for some desirable ϵ > 0 for a fraction at least 1− ζ/2 of all grid points in G where ζ = 1√
log(400πnd)

.

The technique is based on first computing a probability oracle for [[ζ⟨x,X⟩]]10, amplitude amplification
(in case B < 1/4; a step which we omit due to setting B = 1), and conversion to a fractional phase
oracle. The superposition over states |ψ2(x)⟩ for x ∈ G thus obtained allows to reconstruct E[X].

(c) Apply inverse quantum Fourier transform (QFT†
G ⊗ I)|ψ2(x)⟩, where

QFTG : |x⟩ → 1

md/2

∑

y∈G

e2iπm⟨x,y⟩|y⟩

resulting in the state |yj⟩.
(d) Measure yj and renormalise as Xj =

2πyj

ζ .

3. Obtain the estimate X̄ = median(X1, . . . , XNx
).



The QEstimator algorithm (Theorem 3.4 in [CHJ22]) expands on QBounded based on a loop with additional classical
and quantum estimators, each with logarithmic query complexity:

1. Run a classical sub-Gaussian estimator on X (e.g. the polynomial-time estimator of Hopkins based on
semi-definite programming with the sum of squares method [Hop20]) on log(1/δ) T -step trajectories (e.g.
from measurements of UX ) to obtain an estimate X ′ such that P(∥X ′ − E[X]∥2 >

√
Tr(Σ)) ≤ δ/2 for

failure probability δ > 0.
2. For j = 1, . . . , Ny = O(n/ log(d/δ)):

(a) Apply a univariate quantum quantile estimator [Ham21], which is based on sequential amplitude ampli-
fication, to estimate qj , the 2−j’th order quantile of ∥X −X ′∥2 based on O(log(k/δ)/

√
2−j) calls to

UX .
(b) Define the truncated random variable Yj = 1

qj
[[∥X −X ′∥2]]

qj
qj−1

and apply QBounded, obtaining the
estimate Ȳj .

3. Obtain the estimate X̄ =
∑Ny

j=1 qj Ȳj .

In our query complexity results, we will make use of QBounded for traditional REINFORCE (Section 6.2) and
Deterministic Compatible Quantum RKHS Actor-Critic 6.4 while making use of the QEstimator for (stochastic)
Compatible Quantum RKHS Actor-Critic 6.3. This choice is because the latter allows query complexity bounds based
on the variance and in this approach the variance is reduced due to using a baseline for the critic – in particular, when
we set the choice equal to the average value of the policy, for a so-called advantage actor-critic, the result is improved
the most.

6.2 Quadratic improvements for REINFORCE

As a warm-up example, we first seek to establish that the quadratic improvements over classical Monte Carlo hold. We
first establish that under some conditions the gradient of the log-policy is bounded by a constant, which will enable a
quadratic improvement in query complexity over any classical policy (not just kernel-based).
Lemma 6.1. ℓ1 bounds on the gradient of the log-policy. Let κ be a scalar-valued kernel such that |κ(s, s′)| ≤ κmax
for all s, s′ ∈ S. The following statements hold for the ℓ1 upper bound on the gradient of the log-policy, B1 ≥
maxs∈S,a∈A ∥∇θ log(π(a|s))∥1.
a) Then for any Gauss-QKP with A action dimensions and N representers, with probability 1− δ

B1 ≤ ANZ1− δ
2A
κmax

where Z1−δ is the 1− δ quantile of the standard-normal Gaussian.
b) For any finite-precision Gauss-QKP with L-Lipschitz function µ such that L ≤ αmax

ϵkA
and number of representers

N = O(Lϵk
αmax

κmax), it follows that B1 = O(1).
c) Any Representer Softmax-1-PQC satisfies O(1).

Proof:
a) For any Gauss-QKP, noting the form of Eq. 18 and applying union bound over the 1− δ

2A quantile yields the desired
result (see Appendix H.1).

b) The finite-precision Gauss-QKP will have bounded support and the variance is a fraction of this interval. Applying the
settings to the norm of Eq. 18 and setting N = O( Lϵ

amaxκmax
) following Claim 4.1 yields B1 = O(1) (see Appendix H.2).

c) The Representer Softmax-1-PQC is an instance of Softmax-1-PQC, which yields B1 = O(1) following Lemma 4.1
in [JCOD23].

Having defined the bounds on the gradient of the log-policy allows for a query complexity analysis of the QKPs. Below
we analyse the above QKPs in the context of REINFORCE with quantum policy gradient.
Theorem 6.1. Quadratic improvements in REINFORCE. Let δ ∈ (0, 1) be the upper bound on the failure probability,
and let ϵ > 0 be an upper bound on the ℓ∞ error of the policy gradient estimate. Moreover, let π be a policy satisfying
the preconditions of Lemma 6.1b or c. Then with probability at least 1− δ, applying QBounded (algorithm in Theorem
3.3 of [CHJ22] for quantum multivariate Monte Carlo) on a binary oracle for the policy gradient returns an ϵ-correct
estimate X̄ of E[X] = ∇µV (s0) such that

∥∥X̄ − E[X])
∥∥
∞ ≤ ϵ within

n = Õ
(

Trmax

ϵ(1− γ)

)
, (38)



O(T )-step interactions with the environment. This represents a quadratic improvement compared to any policy
evaluated with classical multivariate Monte Carlo which has upper bound B1 ≥ ∥∇θ log(π(a|s))∥1.

We first construct the binary oracle used by Jerbi et al. [JCOD23] which applies UP followed by UR and finally a
simulation of the classical product of

∑T−1
t′=0 γ

trt′ and
∑T−1

t=0 ∇β log(π(at|st)). Note that
∑T−1

t′=0 γ
trt′ = Õ( rmax

1−γ ) due

to the effective horizon of the MDP. Moreover, note that
∥∥∥
∑T−1

t=0 ∇β log(π(at|st))
∥∥∥
1

is upper bounded by O(T ) for π

and by O(TB1) in general.

Now denote X̃ = (1−γ)X
Trmax

. Since an ℓ2 boundB2 ≤ B1 andB1 = O(1), it follows that
∥∥∥X̃
∥∥∥
2
≤ 1 and

∥∥∥E[X̃]
∥∥∥
2
≤ 1 as

required by the QBounded algorithm. Applying QBounded (Theorem 3.3 of [CHJ22]) to X̃ , we obtain an (1−γ)ϵ
Trmax

-precise
estimate of E[X̃] with probability 1− δ within

n = O
(
Trmax log(d/δ)

(1− γ)ϵ

)

= Õ
(

Trmax

(1− γ)ϵ

)
.

O(T )-step interactions with the environment. Therefore, after renormalisation, an ϵ-correct estimate of E[X] is obtained
within the same number of queries.

By contrast, for classical multivariate Monte Carlo (see Appendix A) we note that B∞ ≤ B1 and therefore bounding
X ∈ [−B,B] where B = TB1rmax

1−γ , we require

n = O
((

B1Trmax log(d/δ)

ϵ(1− γ)

)2
)

O(T )-step interactions with the environment.

6.3 Compatible Quantum RKHS Actor-Critic

An alternative to REINFORCE is the Compatible RKHS Actor-Critic algorithm as proposed by Lever and Stafford
[LS15], which reduces the variance of gradient estimates for improved sample efficiency. We briefly review the classical
algorithm to help construct a suitable quantum policy gradient algorithm in Section 6.3.2.

As illustrated in Fig. 4, our framework for implementing actor-critic algorithms is based on a quantum policy gradient
and a classical critic. The algorithm repeats updates to the policy and the critic as follows. It updates the policy by
making use of an occupancy oracle, which samples an analytic expression of the policy gradient according to its
probability under Π and OP . For the Gauss QKP, the quantity X(s, a) = Q̂(s, a)∇θ log(π(a|s)), where Q̂(s, a) is the
prediction from the critic, can be sampled and the resulting policy gradient can be estimated from the expectation over
the occupancy oracle via Quantum Multivariate Monte Carlo. The critic is updated classically based on separate calls to
the traditional trajectory and return oracles (UP and UR) while setting the number of such classical samples such that
there is no increase in query complexity. Additional periodic and optional steps include cleaning trajectory data stored
for replay, sparsifying the policy, and reducing the scale of the covariance.

6.3.1 The classical algorithm

For Gaussian kernel policies, the classical algorithm defines the gradient as

∇µV (s0) =

∫
ν(z)Q(z)K(s, ·)Σ−1(a− µ(s))dz (39)

where z ∈ S × A and ν(z) is the occupancy measure (see Eq. 21). The integral in Eq. 39 can be approximated by
sampling from the distribution formed from (1− γ)ν and computing the quantity based on iid state-action pair samples:

∇µV (s0) ≈
1

1− γ
1

n

n∑

i=0

Q̂(zi)K(si, ·)Σ−1(ai − µ(si)) , (40)
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Obtain X̄: ϵ-precise estimate of
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Figure 4: Overview of the algorithmic framework for Compatible Quantum RKHS Actor-Critic algorithms 2 and 3.

where n is the total number of samples. Since direct knowledge of the occupancy measure is typically unrealistic,
samples can be generated using a subroutine (see Algorithm 1; [AKLM21]) which returns state-action pair samples
from the occupancy distribution (s, a) ∼ ν̃ = (1− γ)ν along with the associated return R(τ |s, a).
Lemma 6.2 states that sampling from ν̃ provides unbiased estimates of (1− γ)ν(s, a). This result provides the basis for
kernel regression of the critic (e.g. based on kernel matching pursuit) as well as the sampling distribution for the policy
gradient in Theorem 6.2.

Lemma 6.2. Unbiased estimator lemma. Let γ ∈ [0, 1] be the discount factor, let ν̃(s, a) be a state-action sampler
following Algorithm 1, and let Q̂(s, a) = ⟨ϕ,K(s, ·)Σ−1(a − µ(s)⟩ be a critic for the Compatible Actor-critic
(Algorithm 2). Then the sampling distribution is unbiased, i.e. ν̃(s, a) = (1− γ)ν(s, a).

Proof:
The proof is given in Appendix J.

Algorithm 1 Classical program for occupancy-based sampling.

1: procedure CLASSICAL OCCUPANCY-BASED SAMPLING [AKLM21]
2: Starting state s0.
3: a0 ∼ π(·|s0).
4: for t = 0, 1, . . . , T − 1 do
5: With probability 1− γ:
6: return (st, at)
7: st+1 ∼ P (·|st, at)
8: at+1 ∼ π(·|st+1)
9: end for

10: end procedure

6.3.2 Compatible Quantum RKHS Actor-Critic

In the quantum-accessible setting, the classical program is modified into suitable quantum oracle for occupancy based
sampling, which is formed from O(T ) calls to the policy evaluation oracle Π and the transition oracle OP . A quantum
multivariate Monte Carlo is then used to obtain reliable estimates of the policy gradient. The proposed algorithm, called
Compatible Quantum RKHS Actor-Critic is shown in Algorithm 2.



Algorithm 2 Compatible Quantum RKHS Actor-Critic

1: Input: error tolerance for policy gradient ϵ > 0, learning rate η > 0, regularisation parameter λ ≥ 0, covariance
shrinkage α ∈ (0, 1), discount factor γ ∈ [0, 1), failure probability δ ∈ (0, 1), upper bound on deviation from
baseline ϵQ, upper bound on the 2-norm of the partial derivative standard deviations of the log-policy σ∇2 , number
of policy centres N , action dimensionality A, parameter dimensionality d = NA, horizon T , number of iterations
Nit.

2: Output: near-optimal policy π
3: Define n1 = O

(
ϵQσ∇2

log(d/δ)

(1−γ)ϵ

)
(Theorem 6.2b)

4: Z = ∅.
5: Q = ∅.
6: for i = 1, . . . , Nit do
7: ▷ Compute policy gradient (Eq. 40)
8: Define binary oracle UX : |0⟩ → ∑

s,a

√
ν̃(s, a)|(Q̂(s, a) − b(s))K(s, ·)Σ−1(a − µ(s))⟩ according to

Lemma 6.3 and Fig. 5 (T interactions with environment per call).
9: Perform quantum multivariate Monte Carlo with X = (Q̂(s, a)− b(s))κ(s, ·)Σ−1(a−µ(s)) based on n1 shots

of UX , following Theorem 6.2.
10: Obtain the final estimate X̄ ≈ E[X] from quantum multivariate Monte Carlo.
11: ∇µV (s0) := X̄ .
12: Compute update: µ+= η∇µV (s0).
13: ▷ Update critic classically from measured trajectories (Eq. 23)
14: Apply n2 = n1 calls to 2T -step implementations of UP and UR, measuring trajectories {τ =

s0, a0, s1, a1, . . . , s2T−1, a2T−1}n2
i=1 and reward sequences {r0, . . . , r2T−1}n2

i=1 (2T interactions with the environ-
ment)

15: Add trajectories Z ← Z ∪ {τ}n2
i=1.

16: Add reward sequences Q ← Q∪ {r0, . . . , r2T−1}n2
i=1.

17: Define an occupancy-based distribution B over z and R(τ |z) by applying Algorithm 1 to randomly selected
trajectories in Z and their associated T -step returns in Q.

18: [NOTE: An alternative is experience replay with bootstrapping (analogous to l.14 of Algorithm 3). ]
19: Kernel regression for the critic based on random samples from B:

Q̂(s, a) = ⟨w,K(s, ·)Σ−1(a− µ(s))⟩ = argmin
Q̂∈HKµ

E(z,Q)∼B
(
Q− Q̂(z)

)2
+ λ

∥∥∥Q̂
∥∥∥
2

HKµ

.

20: Update baseline (e.g. b(s) =
∑

a∈A π(a|s)Q̂(si, ai) ∀s ∈ S).
21: ▷ Optional and periodic updates
22: Remove proportion of old data in Z and Q (periodically).
23: Sparsify policy (periodically, optional): kernel matching pursuit, with tolerance ϵµ.

24: Update number of shots (optional): n1 = O
(

ϵQσ∇2
log(d/δ)

(1−γ)ϵ

)
based on new ϵQ and d.

25: Shrink covariance matrix (optional): Σ← Σ ∗ α.
26: end for



To further reduce the variance and improve the query complexity, we include a baseline in the policy gradient according
to

∇µV (s0) ≈
1

1− γ
1

n

n∑

i=0

(Q̂(si, ai)− b(si))K(si, ·)Σ−1(ai − µ(si)) , (41)

where the baseline b(s) = V̂π(s) =
∑

a∈A π(a|s)Q̂(si, ai) is a possible choice where Q̂(si, ai)−b(si) is the advantage
function, which leads to an implementation related to the popular Advantage Actor-Critic (A2C) [MBM+16]. Including
baselines such as these reduces the variance, since its maximum is reduced, and comes with no effect on the accuracy of
the policy gradient [SB18] due to the derivation

∑
a b(s)∇µπ(a|s) = b(s)∇µ

∑
a π(a|s) = 0.

At each iteration, the algorithm computes the policy gradient based on n1 queries to a quantum oracle, where n1 is set
according to Theorem 6.2. The quantum oracle is a binary oracle UX which when measured yields the random variable
X(s, a) = (Q̂(s, a)− b(s))K(s, ·)Σ−1(a− µ(s)) according to the occupancy measure.

In practice, the occupancy measure is not a distribution. However, Appendix K shows that the related occupancy
distribution can be implemented by forming a quantum analogue of Algorithm 1. Specifically, formulating the oracle

UX : |0⟩ → |ψ⟩|τ⟩
∑

(s,a)∈S×A

√
ν̃(s, a)|s⟩|a⟩|X(s, a)⟩ ,

where |ψ⟩ represents the states from γ coin flips, |τ⟩ is the trajectory, and |s⟩|a⟩|X(s, a)⟩ represent the returned
state-action pair and its associated policy gradient, i.e. X(s, a) = (Q̂(s, a)− b(s))K(s, ·)Σ−1(a− µ(s)) for the Gauss
QKP.

The resulting quantity X has the policy gradient as its expectation up to a constant of (1− γ), allowing an ϵ-precise
estimate of the policy gradient within n1 queries via quantum Monte Carlo. In addition to calls to UX , one applies
the trajectory oracle UP and UR n2 times to measure the trajectories {τ = s0, a0, s1, a1, . . . , s2T−1, a2T−1}n2

i=1 and
reward sequences {r0, . . . , r2T−1}n2

i=1, within 2T interactions with the environment. These classical data are then used
to perform kernel regression, minimising the MSE as in Eq. 23.

So far we have assumed that Algorithm 1 runs with T →∞ such that it always returns, and ν̃ is indeed a probability
distribution summing to one. For finite T , the classical algorithm may not always return before time T − 1. Below we
formulate a quantum oracle and deal with the no return condition to yield the occupancy measure ν.
Lemma 6.3. Occupancy oracle lemma. An occupancy oracle UX with expectation equal to the analytical policy
gradient can be computed within O(T ) calls to OP and Π.

Proof:
We first make use of the circuit UX in Appendix K, which requires T − 1 calls to OP , and T calls to Π. At any
time t = 0, . . . , T − 1, consequent Uγ calls are multi-controlled on previous qubits in the discount register, i.e.
|ψ0⟩, . . . , |ψt−1⟩, such that

|ψt⟩ =
t−1∑

t′=0

√
(1− γ)γt′ |0⟩+

√
γt|1⟩ .

With X-gates controlled on |0⟩|1⟩ for the discount register and each of the state and action qubits, the state-action
register at time T − 1 is given by

|s, a⟩ =
T−1∑

t=0

∑

s′,a′

√
(1− γ)γtPt(s′, a′|s0, a0, π)|s′, a′⟩+

√
γT |0⟩

=
∑

s′,a′

√
ν̃(s′, a′)|s′, a′⟩+

√
γT |0⟩

The final OX operator yields the following state |X(s, a)⟩ on the gradient register,

|X(s, a)⟩ =
∑

s′,a′

√
ν̃(s′, a′)|s′, a′⟩|X(s′, a′)⟩+

√
γT |X(0, 0)⟩ ,

where X(0, 0) is the quantity conditioned on state and action both being |0⟩. Consequently, the gradient register has
expectation

⟨X⟩ =
∑

(s,a)

ν̃(s, a)X(s, a) + γTX(0, 0) .



Since the quantities X(s, a) are analytically known for all (s, a) ∈ S ×A, it is straightforward to subtract γTX(0, 0)
and divide the data by (1− γ) to obtain

⟨X⟩ =
∑

(s,a)

ν(s, a)X(s, a) .

Theorem 6.2 states that shots from UX can provide a sample-efficient estimate based on the approximation of Eq. 39
through Eq. 40. Instead of a dependence on the maximal value as in quantum policy gradient, the actor-critic has a
dependence on the maximal deviation from the baseline b(s). We provide the proofs in a generic way (i.e. for a variety
of policies). We first derive an upper bound on the variance based on the range (e.g. Bp = O(1) for the Gaussian QKP)
and we then analyse a case where more information of the variance is known, which is beneficial since the standard
deviation is only a fraction of the range. For instance, for the Gaussian QKP, the improvement in query complexity
for p = 1 is at least Ω(mini

ui−li√
Σi,i

), where [li, ui] is the support of the finite-precision Gaussian for dimension i (see

Appendix L).
Theorem 6.2. Compatible Quantum RKHS Actor-Critic query complexity. Let δ ∈ (0, 1) be the upper bound
on the failure probability, and let ϵ > 0 be an upper bound on the ℓ∞ error of the policy gradient estimate. Let
X(s, a) =

(
Q̂(s, a)− b(s)

)
∇µ log(π(a|s)) and define UX as a binary state-action based occupancy oracle for X

based on Lemma 6.3. Moreover, let |Q̂(s, a)− b(s)| ≤ ϵQ for all (s, a) ∈ S ×A, where b is a baseline function. Then
it follows that
a) with probability at least 1− δ, QEstimator (algorithm in Theorem 3.4 of [CHJ22] for quantum multivariate Monte
Carlo) returns an ϵ-correct estimate X̄ such that

∥∥X̄ −∇µV (s0))
∥∥
∞ ≤ ϵ within

n = Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)
(42)

O(T ) time steps of interactions with the environment, when there is an upper bound Bp ≥ maxs,a ∥∇µ log(π(a|s))∥p
for some p ≥ 1; and
b) under the assumption that for all i = 1, . . . , d, we have the upper bound Varν̃′ [∂i log(π(a|s))] ≤ σ∂(i)2 where ν̃′ is
the occupancy distribution before correction with γTX(0, 0), QEstimator returns an ϵ-correct estimate within

n = Õ
(
dξ(p)ϵQσ∇p

(1− γ)ϵ

)
(43)

O(T ) time steps of interactions with the environment, also with probability at least 1− δ, where σ∇p = ∥σ∂(:)∥p.

Proof:
We apply QEstimator (see start of this section) to a normalised oracle UX̃ such that ∥X∥2 ≤ 1 and the result follows
from Theorem 3.4 of [CHJ22] after renormalisation. The full proof is given in Appendix M.

As shown in the corollary below, Theorem 6.2a implies a quadratic speedup compared to its classical counterpart for
ϵQ ≥ 1. Such cut-off points are standard in big O notation to represent the asymptotic worst case, and indeed one may
typically select x→∞ for terms in the enumerator and x→ 0 for terms in the denominator. The ϵQ ≥ 1 case includes
many settings where T →∞, and |rmax| → ∞ but more generally settings where one action has a larger than 1 value
benefit compared to others.
Corollary 6.1. Quadratic speedup over classical sub-Gaussian estimator. For any ϵQ ≥ 1, any p ≥ 1, upper bound
Bp ≥ maxs,a ∥∇µ log(π(a|s))∥p, and covariance matrix ΣX with operator norm (i.e. maximal eigenvalue) ∥ΣX∥,
Eq. 42 provides a quadratic speedup in ℓ∞ error compared to a comparable classical sub-Gaussian estimator, which
yields

n = Õ
(
d2ξ(p)ϵ2QB

2
p + ∥ΣX∥

(1− γ)2ϵ2

)
. (44)

Similarly, under the conditions of Theorem 6.2b), a quadratic speedup follows since the classical sub-Gaussian estimator
yields

n = Õ



∥∥d2ξ(p)ϵ2Qσ∇p

∥∥2
p
+ ∥ΣX∥

(1− γ)2ϵ2


 . (45)



Proof:
For the classical algorithm, one may use any sub-Gaussian multivariate mean estimator [LM19] as these yield the
same query complexity as the computationally efficient estimator of Hopkins [Hop20], i.e. an ℓ2 error of ϵ ≤
C
(√

Tr(ΣX)/n+
√
∥ΣX∥ log(1/δ)/n

)
with probability at least 1− δ for some universal constant C > 0. Applied

to our setting, we obtain

n = O
(
Tr(ΣX) + ∥ΣX∥ log(1/δ)

ϵ22

)
((x+ y)2 = O(x2 + y2))

= O
(
d2ξ(p)ϵ2QBp + ∥ΣX∥ log(1/δ)

ϵ22

)
(from upper bound on

√
Tr(ΣX) in Theorem 6.2a)

= Õ
(
d2ξ(p)ϵ2QB

2
p + ∥ΣX∥
ϵ2

)
.

Correcting for the discount factor, we obtain Eq. 44.

Analogous computations with upper bound Tr(ΣX) ≤ d2ξ(p)ϵ2Qσ2
∇p

yield Eq. 45.

To prove the quadratic speedup, note that
∥∥∥X̂ − E[X]

∥∥∥
∞
≤
∥∥∥X̂ − E[X]

∥∥∥
2
≤ ϵ and compare the results to The-

orem 6.2a–b).

Since training the critic requires additional samples, below we analyse the total query complexity of Compatible
Quantum RKHS Actor-critic and compare it to the classical case. A first analysis uses a simple tabular average and
disregards the role of replaying data from the buffer. We focus on part a of Theorem 6.2 but note that part b is completely
analogous.
Corollary 6.2. Total query complexity for Compatible Quantum RKHS Actor-critic with a tabular averaging critic.
Let δ > 0 be the upper bound on the total failure probability (combining critic and policy gradient bounds) and let
ϵ > 0 be the upper bound on the ℓ∞ error on the policy gradient. Let Q(s, a) ∈ [−Vmax, Vmax] and Q̂(s, a) be the
state-action value and the prediction of the critic, respectively, for any state-action pair (s, a) ∈ S ×A. Moreover, let
Bp ≥ maxs,a ∥∇µ log(π(a|s))∥p and let |Q̂(s, a)−b(s)| ≤ ϵQ for all (s, a) ∈ S×A, where b is a baseline function and

ϵQ ≥ 1. Let ϵ′ ≥
√

(1−γ)ϵ
dξ(p)TϵQBp

Vmax be a tolerable upper bound on the critic error, i.e. ϵ′ ≥ maxs,a |Q̂(s, a)−Q(s, a)|.
Then the total query complexity for Compatible Quantum RKHS Actor-Critic, combining queries for the policy gradient
and the critic, is given by the same expression as in Eq. 42,

n = Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)

O(T ) timesteps of environment interaction, while the total query complexity for (classical) Compatible RKHS Actor-
Critic is given by the same expression as in Eq. 44,

n = Õ
(
d2ξ(p)ϵ2QB

2
p ∥ΣX∥

(1− γ)2ϵ2

)

O(T ) timesteps of environment interaction. Therefore, a quadratic improvement holds for any p ≥ 1.

Proof:
The proof is given in Appendix N.1.

We now turn to analysing the total query complexity in the case where the critic is based on kernel ridge regression,
focusing on the L2 bound which is more common in the function approximation setting. The corollary imposes a
requirement on the tolerable error such that the number of samples is limited compared to the number of samples for
the policy gradient estimation. Note that the requirement is not restrictive in case Tdξ(p) ≥ (1− γ)ϵ.
Corollary 6.3. Total query complexity of Compatible Quantum RKHS Actor-Critic with a kernel ridge regression
critic. Suppose the preconditions in Lemma 3.4. Moreover, let δ > 0 be the upper bound on the total failure probability
(combining critic and policy gradient bounds) and let ϵ > 0 be the upper bound on the ℓ∞ error on the policy gradient.
Moreover, let Bp ≥ maxs,a ∥∇µ log(π(a|s))∥p for some p ≥ 1 and let |Q̂(s, a)− b(s)| ≤ ϵQ for all (s, a) ∈ S × A,

where b is a baseline function and ϵQ ≥ 1. Further, let ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)ϵQBp

)4
be a tolerable upper bound on the L2 critic



error such that ϵ′ ≥
∥∥∥Q̂−Q

∥∥∥
L2

, let m be the number of samples to estimate the critic, and let n2 = m
2T denote the

number of queries to the trajectory oracle. Then the total query complexity for Compatible Quantum RKHS Actor-Critic,
combining queries for the policy gradient and the critic, is given by the same expression as in Eq. 42,

n = Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)

while the total query complexity for (classical) Compatible RKHS Actor-Critic is given by the same expression as in
Eq. 44,

n = Õ
(
d2ξ(p)ϵ2QB

2
p + ∥ΣX∥

(1− γ)2ϵ2

)
.

Therefore, a quadratic improvement holds for any p ≥ 1.

Proof:
The proof is given in Appendix N.2.

6.4 Deterministic Compatible Quantum RKHS Actor-Critic

When seeking to learn the optimal deterministic policy, µ∗, from samples of a behaviour policy, π, it is also possible to
design an algorithm which uses a deterministic policy gradient to directly descend in a deterministic policy µ, regardless
of the form of the behaviour policy π. In this context, we analyse an off-policy actor-critic based on deterministic policy
gradient algorithms [SLH+14], where we define µ as a deterministic policy with the form of Eq. 16. The algorithm
further applies experience replay, leading to a deep deterministic policy gradient (DDPG) [LHP+16] implementation.
The algorithm is again implemented according to the framework in Fig. 4, making use of quantum policy gradient and a
classical critic.

The approach, which we call Deterministic Compatible Quantum RKHS Actor-Critic (see Algorithm 3), uses a state-
based occupancy measure νπ(s) :=

∑T
t=0 γ

tPt(s|s0, π) and substitutes the action from the trajectory by the action
µ(s) of the deterministic policy. The value is reformulated as

Vµ(s0) =

∫
νπ(s)Qµ(s, µ(s)) , (46)

leading to a policy gradient of the form

∇µVµ(s0) :=

∫
νπ(s)∇µµ(s)∇aQµ(s, a)|a=µ(s)ds , (47)

where Qµ is the state-action value of the deterministic policy. The equality omits an approximation error, which is due
to dropping a term which depends on ∇βQµ(s, a); since it is considered negligible [SLH+14], it will be omitted in
further analysis.

At each iteration, the algorithm computes the policy gradient based on n1 queries to a quantum oracle, where n1 is set
according to Theorem 52. The quantum oracle is a binary oracle UX which when measured yields the random variable
X = ∇aQ̂(sh, a)|a=µ(s)K(s, ·) according to the state-occupancy measure:

UX : |0⟩ → |φ⟩|τ⟩
∑

s∈S

√
ν(s)|s⟩|a⟩|X(s)⟩ ,

where |φ⟩ represents the states from γ coin flips, |τ⟩ is the trajectory, and |s⟩|a⟩|X(s)⟩ represent the returned state-action
pair and its associated policy gradient, i.e. X(s) = ∇aQ̂(s, a)|a=µ(s)K(s, ·) for the Gauss QKP.

Again UX is based on a quantum analogue of Algorithm 1, as shown in Lemma 6.3 and Appendix K, but now one
simply removes the action control qubits for the CX-gates. The resulting quantity provides an ϵ-precise estimate of
the policy gradient within n1 queries via quantum multivariate Monte Carlo. In addition to calls to UX , the algorithm
applies n2 = O((1/T ) log(1/δ)) calls to the trajectory oracle and return oracle, measuring the full trajectory with
rewards {s0, a0, r0 . . . , sT−1, aT−1, rT−1}n2

i=1, with T interactions with environment per call.

Analogous to the stochastic Compatible Quantum RKHS Actor-Critic, on oracle is formulated based on the occupancy,
but in this case based on the state occupancy. With n samples from the occupancy measure s1, . . . , sn ∼ ν̃π, and a



Algorithm 3 Deterministic Compatible Quantum RKHS Actor-Critic

1: Input: error tolerance for policy gradient ϵ > 0, learning rate η > 0, regularisation parameter λ ≥ 0, discount
factor γ ∈ [0, 1), failure probability δ ∈ (0, 1), upper bound C2 ≥ maxs,a

∥∥∥∇aQ̂(s, a)|a=µ(s)

∥∥∥
2
, number of policy

centres N , action dimensionality A, parameter dimensionality d = NA, horizon T , number of iterations Nit.
2: Output: near-optimal policy π.
3: Define n1 = O

(
C2 log(d/δ)

(1−γ)ϵ

)

4: B = ∅.
5: for i = 1, . . . , Nit do
6: ▷ Compute policy gradient (Eq. 48)
7: Define binary oracle UX : |0⟩ →∑

s

√
ν(s)|∇aQ̂(s, a)|a=µ(s)K(s, ·)⟩ according to Lemma 6.3 and Fig. 5 (T

interactions with environment per call).
8: Perform quantum multivariate Monte Carlo with X(s) = ∇aQ̂(s, a)|a=µ(s)K(s, ·) based on n1 shots of UX ,

according to Theorem 6.3.
9: Obtain the final estimate X̄ ≈ E[X] from quantum multivariate Monte Carlo.

10: ∇µV (s0) := X̄ .
11: Compute update: µ+= η∇µV (s0).
12: ▷ Update critic (Eq. 23)
13: Apply n2 = n1 calls to the trajectory oracle and return oracle, measuring the full trajectory with rewards
{s0, a0, r0 . . . , sT−1, aT−1, rT−1}n2

i=1 (T interactions with environment per call).
14: Add trajectory and rewards to buffer B.
15: Define distribution over buffer (e.g. uniform, occupancy-based or prioritised).
16: Kernel regression for the critic based on buffer B and bootstrapping with target critic Q̂(s, µ−(s); v−, w−):

Q̂(s, a) = ⟨w, (a− µ(s))⊺K(s, ·)⟩+ vϕ(s) = argmin
Q̂∈HKµ

Es,a,r,s′∼B

[
Q̂(s, a)−

(
r + γQ̂(s, µ−(s); v−, w−)

)2
+ λ

∥∥∥Q̂
∥∥∥
2

HKµ

]
.

17: ▷ Optional and periodic updates
18: Remove proportion of old data in B (periodically).
19: Sparsify policy (periodically, optional): kernel matching pursuit, with tolerance ϵµ.

20: Update number of shots (periodical, optional) n1 = O
(

C2 log(d/δ)
(1−γ)ϵ

)
based on new number of parameters.

21: end for

critic Q̂, the kernel-based deterministic policy gradient for both the parametric and non-parametric settings (θ = β and
θ = µ, respectively) are given by

∇θV (s0) ≈
1

1− γ
1

n

n∑

i=0

∇θµ(si)∇aQ̂(si, a)|a=µ(si) (48)

=
1

1− γ
1

n

n∑

i=0

K(si, ·)∇aQ̂(si, a)|a=µ(sn) . (49)

This approach can be implemented with the oracle as described in Algorithm 2 but now the action samples from
the occupancy distribution are substituted by {µ(si)}ni=1. Often these quantities are required to compute a suitable
stochastic policy (e.g. Gaussian or uniform policy centred around µ), so this typically comes with no additional
computational cost.

Following [SLH+14], the compatible critic is now of the form

Q̂(s, a) = ⟨w, (a− µ(s))⊺∇µµ(s)⟩+ vϕ(s)

= ⟨w, (a− µ(s))⊺K(s, ·)⟩+ vϕ(s) , (50)

for some feature map ϕ(s) ∈ R, and parameters v ∈ R and w ∈ RN×A. Since the Q-value estimates the value of µ
rather than the value of the behaviour policy π, a suitable off-policy technique should be used. A natural choice is to
apply experience replay [MKS+15] with the DDPG style update [LHP+16]:

L(Q̂(s, a)) = Es,a,r,s′∼B

[(
r + γQ̂(s, µ−(s); v−, w−)− Q̂(s, a)

)2]
, (51)



where transitions are sampled iid from a large buffer B, and µ−,v−, w− are updated infrequently (or with small
increments using exponential averaging) to provide a slowly moving target for stable policy improvement as the critic is
otherwise continually subject to large changes.

An analogue to Theorem 6.2 is now formulated using a binary oracle that returns after measurement the quantity
κ(s, ·)∇aQ̂(s, a)|a=µ(s). With the critic available, the quantity ∇aQ̂(s, a)|a=µ(s) can be evaluated classically (e.g.
using finite differencing), before being input to the binary oracle. Note that the policy gradient computed for the
scalar-valued κ can easily be converted to the matrix-valued kernel of the formK(s, s′) := κ(s, s′)M after the quantum
oracle, since it follows immediately after matrix multiplication.
Theorem 6.3. Deterministic Compatible Quantum RKHS Actor-Critic query complexity. Let δ ∈ (0, 1) be the
upper bound on the failure probability, ϵ > 0 be an upper bound on ℓ∞ error of the policy gradient estimate,
Cp ≥ maxs,a

∥∥∥∇aQ̂(s, a)|a=µ(s)

∥∥∥
p

for some p ≥ 1, ξ(p) = max{0, 1/2− 1/p}, let A be the action dimensionality,

and let N be the number of centres in the definition of µ (Eq. 16). Moreover, X(s) = κ(s, ·)∇aQ̂(s, a)|a=µ(s)⟩, where
κ : S × S → C is a kernel such that for any s, s′ ∈ S |κ(s, s′)| ≤ 1 (e.g. a quantum kernel). Moreover, define UX as a
binary state-based occupancy oracle for X based on UX̃ according to Lemma 6.3. Then with probability at least 1− δ,
applying QBounded (algorithm in Theorem 3.3 of [CHJ22] for quantum multivariate Monte Carlo) on UX returns an
ϵ-correct estimate X̄ of E[X] = ∇µV (s0) such that

∥∥X̄ − E[X])
∥∥
∞ ≤ ϵ within

n = Õ
(
dξ(p)Cp

(1− γ)ϵ

)
(52)

O(T )-step interactions with the environment.

Proof:
We apply QBounded (algorithm in Theorem 3.3 of [CHJ22]).

Querying the oracle UX̃ , the normalised random variable X̃ =
κ(s,·)∇aQ̂(s,a)|a=µ(s)

dξ(p)Cp
will be measured within T time

steps of interactions with the environment. It follows from the definition of Cp that for all s ∈ S, that
∥∥∥X̃
∥∥∥
2
=

∥∥∥∥∥
κ(s, ·)∇aQ̂(s, a)|a=µ(s)

dξ(p)Cp

∥∥∥∥∥
2

≤ 1

dξ(p)Cp
∥κ(s, ·)∥2

∥∥∥∇aQ̂(s, a)|a=µ(s)

∥∥∥
2

(Cauchy-Schwarz)

≤ (NA)ξ(p)Cp

dξ(p)Cp
(|κ(s, s′)| ≤ 1 for any s′, and Hölder’s inequality)

= 1 (d = NA) .

Applying Theorem 3.3 of [CHJ22] to X̃ , QBounded returns an ϵ
dξ(p)Cp

-precise estimate of E
[
X̃
]
, such that

∥∥∥X̃ − E
[
X̃
]∥∥∥

∞
≤ ϵ

dξ(p)Cp

within

n ≤ dξ(p)Cp log(d/δ)

ϵ
oracle queries. Therefore, after renormalisation, an ϵ-precise estimate of X is obtained within the same number of
oracle queries.

Following the reasoning of Lemma 6.3 with state-based oracle, we note that E[X] = 1
1−γ (E[X̃]−γTX(0)). Subtracting

the known constant γTX(0) and converting the state occupancy distribution to the occupancy measure,

νπ(s) =
1

1− γ ν̃π(s) ,

it follows that

n ≤ dξ(p)Cp log(d/δ)

(1− γ)ϵ

= Õ
(
dξ(p)Cp

(1− γ)ϵ

)
.



Theorem 6.3 implies a quadratic speedup compared to its classical counterpart.
Corollary 6.4. Quadratic speedup over classical Hoeffding bounds. For p ∈ [1, 2], the results of Theorem 6.3 lead to
a quadratic speedup over classical multivariate Monte Carlo. That is, classical multivariate Monte Carlo yields

n = Õ
(

C2
p

(1− γ)2ϵ2

)
. (53)

Proof:
Note that

∥X∥∞ =
∥∥∥κ(s, ·)∇aQ̂(s, a)|a=µ(s)

∥∥∥
∞

≤ C∞ .

Correcting for the discount factor and applying classical multivariate Monte Carlo (see Appendix A) to the range
[−B,B], where B = C∞

1−γ yields

n = Õ
(

C2
∞

(1− γ)2ϵ2
)
.

Note that ∥X∥∞ ≤ ∥X∥p. Applying the same p to Eq. 52, the quantum Monte Carlo algorithm satisfies

n = Õ
(

Cp

(1− γ)ϵ

)
.

Noting that dξ(p) = 1 for p ∈ [1, 2] demonstrates the quadratic speedup.

Theorem 6.3 implies a few key strategies for reducing the query complexity of Deterministic Compatible Quantum
RKHS Actor-Critic, as summarised in the informal corollary below.

Corollary 6.5. The importance of expressiveness control of µ and regularisation of Q̂. The results of Theorem 6.3
imply that controlling N and∇aQ̂ are of critical importance for reducing query complexity. For the former, we propose
the earlier-mentioned kernel matching pursuit technique (see Eq. 19). For the latter, regularisation techniques for Q̂
are recommended.

Algorithm 3 formulates separate samples for the policy gradient and the critic estimation. Comparable to Corollary 6.2,
we compare the total query complexity of the algorithm to a classical variant thereof with a simple tabular critic
(disregarding aspects of experience replay and the function approximator).
Corollary 6.6. Total query complexity of Deterministic Compatible Quantum RKHS Actor-Critic with a tabular
averaging critic. Let δ > 0 be the upper bound on the failure probability. Let Q(s, a) ∈ [−Vmax, Vmax] and Q̂(s, a) be
the state-action value and the prediction of the critic, respectively, for any state-action pair (s, a) ∈ S ×A. Moreover,

let ϵ′ ≥
√

(1−γ)ϵ
TCp

Vmax be the tolerable upper bound on the critic error, i.e. ϵ′ ≥ maxs,a |Q̂(s, a)−Q(s, a)|. Let ϵ > 0

be the tolerable ℓ∞ error on the policy gradient, and let N be the number of representers. For some p ∈ [1, 2], let

Cp ≥ maxs,a

∥∥∥∇aQ̂(s, a)|a=µ(s)

∥∥∥
p

and Cp ≥ 1. Moreover, let ϵ > 0 be the upper bound on the ℓ∞ error on the policy

gradient. Then with probability at least 1− δ, the total query complexity for Deterministic Compatible Quantum RKHS
Actor-Critic, combining queries for the policy gradient and the critic, is given by the same expression as in Eq. 6.3, i.e.

n = Õ
(
dξ(p)Cp

(1− γ)ϵ

)

while the total query complexity for (classical) Deterministic Compatible RKHS Actor-Critic is given by the same
expression as in Eq. 53,

n = Õ
(

C2
p

(1− γ)2ϵ2

)
,

yielding a quadratic improvement.



Proof:
The proof is given in Appendix O.1

We now turn to providing a similar total query complexity analysis when the critic is based on kernel ridge regression.

Corollary 6.7. Total query complexity of Deterministic Compatible Quantum RKHS Actor-Critic with a kernel ridge
regression critic. Suppose the preconditions in Lemma 3.4. Moreover, let δ > 0 be the upper bound on the failure

probability and let ϵ > 0 be the upper bound on the ℓ∞ error on the policy gradient. Further, let ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)Cp

)3/4

be a tolerable upper bound on the ℓ∞ critic error and let n2 = m
2T denote the number of queries to the trajectory oracle.

Then the total query complexity for Compatible Quantum RKHS Actor-Critic, combining queries for the policy gradient
and the critic, is given by the same expression as in Eq. 6.3, i.e.

n = Õ
(
dξ(p)Cp

(1− γ)ϵ

)

O(T ) timesteps of environment interaction, while the total query complexity for (classical) Deterministic Compatible
RKHS Actor-Critic is given by the same expression as in Eq. 53

n = Õ
(

C2
p

(1− γ)2ϵ2

)

O(T ) timesteps of environment interaction. Therefore, a quadratic improvement holds for any p ∈ [1, 2].

Proof:
The proof is given in Appendix O.2.

7 Discussion

We now turn to discussing some further improvements, implementation details, and related challenges.

7.1 Placing the policy centres

While the Lipschitz based bound provide a worst case guarantee, it is possible to improve on this bound. To select
the location of policy centres, techniques such as state partitioning techniques (e.g. Voronoi tesselations) as well as
bandwidth tuning, may help to reduce the dependency on the dimensionality. The effectiveness of state partitioning
is illustrated for a classical radial basis function (RBF) kernel: by placing the centres appropriately across the
state space, the state space will be covered in the support of the kernel function, allowing a close approximation
of the optimal deterministic policy. Compare this for instance, to a classical neural network, typically requiring
at least one hidden layer with a size monotonically increasing given the input plus output layers’ sizes, yielding
d = O((S +A)(S) + (S +A)(A)) = O(S2 +A2).

7.2 Optimising the kernel

While the above policy gradient only considers optimising the policy weights within the quantum circuits, optimising
the kernel brings further flexibility to the framework. For instance, an interesting kernel in this respect is the bandwidth
based squared cosine kernel (Eq. 1) where only a single bandwidth factor c > 0 can impact the definition of the kernel
in terms of expressivity, trainability, and generalisation. For instance, the central differencing technique may be applied
to optimising feature-maps, which are then used for inner product computations within the quantum circuit. Optimising
the feature-map in this manner offers the advantage that the change in the circuit is directly related to the quantum
kernel. This helps to implicitly define a new RKHS along with its unique function space and associated regulariser. We
would suggest to apply such updates infrequently (or with a lower learning rate) and in combination with policy weight
updates.

It is important that these inner products are computed coherently within the circuit which is an implementation
challenge. Hence for this part, we consider the generalisation of the Representer PQC shown in Fig. 1b. Given a suitable
parametrisation of the operators, numerical gradient techniques such as the central differencing we explored, may also
be applicable.



7.3 Reducing the number of parameters

While we propose kernel matching pursuit for the analytical gradient, we note that it is also possible to use techniques
for similarly pruning PQCs which can be used in numerical gradient approaches. Using tools based on quantum Fisher
information matrix (QFIM), one can reduce the number of parameters in our PQCs following the approach by Haug et
al. [HBK21]. Noting that the QFIM for a state |ψ(θ)⟩ is given by

Fi,j = 4ℜ [⟨∂iψ(θ)|∂jψ(θ)⟩ − ⟨∂iψ(θ)|ψ(θ)⟩⟨ψ(θ)|∂jψ(θ)⟩] (54)

where ℜ denotes the real part, the expressive capacity of a PQC can be determined by the rank of its QFIM. Though the
QFIM for |ψ(θ)⟩ is a function of θ and hence is a local measure, its rank at random θ captures the global expressive
power. Consequently, the QFIM for |ψ(θ)⟩ can be used to identify and eliminate redundant parameters, a process which
involves calculating the eigenvectors of the QFIM that have zero eigenvalues. An iterative procedure can then be applied
to remove parameters associated with zero components in the eigenvalues until all redundant gates are eliminated (see
Algorithm 1 in [HBK21]).

8 Conclusion

This paper presents optimisation techniques for quantum kernel policies for efficient quantum policy gradient algorithms,
including numerical and analytical gradient computations as well as parametric and non-parametric representations. We
define various kernel-based policies based on representer theorem formalisms, which include a purely coherent PQC, a
Softmax PQC, and a Gaussian wave function preparation. We prove quadratic improvements of kernel-based policy
gradient and actor-critic algorithms over their classical counterparts, across different formulations of stochastic and
deterministic kernel-based policies. Two actor-critic algorithms are proposed that improve on quantum policy gradient
algorithms under favourable conditions, depending on the critic’s deviation from the baseline prediction for our first
implementation and the critic gradient norm for our second implementation. Compared to traditional parametrised
quantum circuit policies, the proposed quantum kernel policies allow convenient analytical forms for the gradient and
techniques for expressiveness control, and are suitable for vector-valued action spaces.

Appendices
A Classical Multivariate Monte Carlo

For Multivariate Monte Carlo, and ϵ > 0, an erroneous estimate can be defined by having at least one dimension with
error greater than ϵ, leading to the following failure probability upper bound:

P(||X̄ − E[X]||∞ ≥ ϵ) ≤
d∑

i=1

P(|X̄i − E[Xi]| ≥ ϵ) (union bound)

≤ d×max
j

P(|X̄j − E[Xj ]| ≥ ϵ)

≤ 2d exp

(
−2n2ϵ2

4nB2

)
(Hoeffding and Xi ∈ [−B,B] for all i ∈ [d])

= δ .



Therefore the number of samples required for an error at most ϵ and failure rate at most δ can be derived as follows

δ = 2d exp

(
− nϵ

2

2B2

)

log(2d/δ) =
nϵ2

2B2

n =
2B2

ϵ2
log(2d/δ)

= O
(
B2

ϵ2
log(d/δ)

)

= Õ
(
B2

ϵ2

)
.

B Analytical log-policy gradient

The gradient of the log-policy with respect to the parameters can be derived following the proof in Lever and Stafford
[LS15].

Define g : HK → R : µ→ log(π(a|s)). We want to find the gradient of g with respect to µ. Use the Fréchet derivative,

a bounded linear map Dg|µ : H → R with lim∥h∥→0
∥g(µ+ h)− g(µ)∥R −Dg|µ(h)

∥h∥HK

= 0. In our setting, this

becomes

Dg|µ :h→ (a− µ(s))Σ−1h(s)

= ⟨K(s, ·)Σ−1(a− µ(s)), h(·)⟩

and the direction of steepest ascent is therefore K(s, ·)Σ−1(a− µ(s)).
Proof:
Expanding g, we get

g(µ+ h) = log

(
1

Z
exp

[
−1

2
(µ(s) + h(s)− a)⊺Σ−1(µ(s) + h(s)− a)

])

= − log(Z)− 1

2
(µ(s) + h(s)− a)⊺Σ−1(µ(s) + h(s)− a)

and

g(µ) = log

(
1

Z
exp

[
1

2
(µ(s)− a)⊺Σ−1(µ(s)− a)

])

= − log(Z)− 1

2
(µ(s)− a)⊺Σ−1(µ(s)− a) .



Now evaluate the criterion for Fréchet differentiability:

lim
∥h∥→0

∥g(µ+ h)− g(µ)−Dg|µ(h)∥R
∥h∥HK

= lim
∥h∥→0

∥∥g(µ+ h)− g(µ)− (a− µ(s))Σ−1h(s), h(·)⟩
∥∥

∥h∥HK

(definition)

= lim
∥h∥→0

∥∥h(s)⊺Σ−1h(s)
∥∥

2 ∥h∥HK

(cancelling out µ and a while adding h(s) to −1

2
h(s))

= lim
∥h∥→0

∥∥⟨h(s)⊺K(s, ·)Σ−1, h⟩
∥∥

2 ∥h∥HK

(reproducing property)

≤ lim
∥h∥→0

∥∥(Σ−1h(s))⊺K(s, s)(Σ−1h(s)
∥∥ ∥h∥HK

)

2 ∥h∥HK

(Cauchy-Schwarz)

= lim
∥h∥→0

∥∥(Σ−1h(s))⊺K(s, s)(Σ−1h(s))
∥∥

2

= 0 .

Thus the ascent direction is indeed

∇µ log(π(a|s)) = K(s, ·)Σ−1(a− µ(s)) .

C Compatible function approximation and the natural policy gradient

Define a feature-map of the form ϕ : (s, a) 7→ K(s, ·)Σ−1(a− µ(s)) ∈ HK and an associated scalar-valued kernel

Kµ((s, a), (s
′, a′)) = K(s, s′)Σ−1(a− µ(s))Σ−1(a′ − µ(s′)) .

Given that the kernel satisfies Kµ((s, a), (s
′, a′)) = ⟨ϕ(s, a), ϕ(s′, a′)⟩, its associated Hilbert space HKµ

has the
reproducing property.

1. There exists a w∗ ∈ HK such that

Q̂(s, a) = ⟨w∗,K(s, ·)Σ−1(a− µ(s))⟩ ∈ HKµ

is a compatible approximator (see Eq. 24).
Suppose that Q̂ is defined as

Q̂(z) = argmin
Q̂∈HK

L(Q̂) =

∫
ν(z)

(
Q̂(z)−Q(z)

)2
dz ∈ Hµ .

Due to the reproducing property ofHKµ
, there exists a w∗ in the feature spaceHK such that Q̂πµ

(z) = ⟨w∗, ϕ(z)⟩. It
follows that

∇w∗Q̂πµ(s, a) = ϕ(s, a) = K(s, ·)Σ−1(a− µ(s)) .
It follows that at a (possibly local) optimum, w∗ satisfies

0 = ∇wL(Q) =

∫
ν(z)(Q(z)− Q̂(s, a))∇wQ̂(s, a)dz

=

∫
ν(z)(Q(z)− Q̂(s, a))K(s, ·)Σ−1(a− µ(s))dz .

From the policy gradient theorem, the above equality, and the analytical gradient for∇µ log(π(a|s)) = K(s, ·)Σ−1(a−
µ(s)) (see Appendix B), it follows that

∇µV (s0) =

∫
ν(z)Q(z)∇µ log(π(a|s))dz

=

∫
ν(z)Q̂(s, a)∇µ log(π(a|s))dz .



2. w∗ is the natural policy gradient, i.e. w∗ = F(µ)−1∇µV (s0).
Since ϕ(s, a) = ∇µ log(π(a|s)) and 0 = ∇wL(Q), the Fisher information is given by

F(µ) = E [∇µ log(π(a|s))∇µ log(π(a|s))⊺]

=

∫
ν(z)∇µ log(π(a|s))∇µ log(π(a|s))⊺dz .

Note that due to the compatible function approximation and∇µ log(π(a|s)) = K(s, ·)Σ−1(a− µ(s)), it follows that

∫
ν(s, a)∇µ log(π(a|s))(⟨w∗,∇µ log(π(a|s))−Q(z))dz = 0

and therefore

F(µ)w∗ =

∫
ν(s, a)Q(z)∇µ log(π(a|s))dz = ∇µV (s0) .

In other words, w∗ = F(µ)−1∇µV (s0).

D Analytical policy gradient for softmax quantum kernel policy

The functional policy gradient of the policy gradient of the softmax quantum kernel policy in Eq. 25 is given by

∇f log(π(a|s)) = T
(
K((s, a), ·)− Ea′∼π(·|s)K((s, a′), ·)

)
.

Proof:

∇f log(π(a|s)) = ∇f log(
1

Z
eT f(s,a))

= ∇f

(
log(eT f(s,a))− log(Z)

)

= ∇f

(
T f(s, a)− log(

∫
eT f(s,a′)da′)

)

= TK((s, a), ·)−∇f

(∫
eT f(s,a′)da′

)
/Z

= TK((s, a), ·)− 1

Z

∫
∇fe

T f(s,a′)da′

= TK((s, a), ·)− 1

Z

∫
eT f(s,a′)∇fT f(s, a′)da′

= TK((s, a), ·)− 1

Z

∫
eT f(s,a′)∇fT f(s, a′)da′

= TK((s, a), ·)− T
∫
π(a′|s)K((s, a′), ·)da′

= TK((s, a), ·)− T Ea′∼π(·|s)[K((s, a′), ·)]
= T

(
K((s, a), ·)− Ea′∼π(·|s)[K((s, a′), ·)]

)
.



E Lipschitz continuity and the number of parameters

Note that for any two inputs x, x′ ∈ X and for any real-valued kernel κ : X × X → R, κmax ≥ maxs,s′ κ(s, s
′),

amax ≥ maxa∈A ∥a∥1, and µ(x) :=
∑N

i=1 βiκ(xi, x), we have

∥µ(x)− µ(x′)∥1 =

∥∥∥∥∥
N∑

i=1

βi(κ(xi, x)− κ(xi, x′))
∥∥∥∥∥
1

≤ N max
i
∥βi∥1 max

x,x′,x′′∈S
∥κ(x, x′)− κ(x, x′′∥1

≤ N max
a∈A
∥a∥1 max

x,x′∈S
∥κ(x, x′)∥1 (kernel is positive definite)

≤ Namaxκmax .

Due to the finite per-dimension precision ϵk = 2−k, the ℓ1 distance of any two distinct inputs x ̸= x′ is lower bounded
by ∥x− x′∥1 ≥ ϵk. Therefore, a Lipschitz constant L can be defined as

L ≥ max
x,x′

∥µ(x)− µ(x′)∥1
∥x− x′∥1

≥ Namaxκmax

ϵk
.

This implies

N = O
(

Lϵk
amaxκmax

)
.

F Raw-PQC and bound on D (numerical gradient)

Proof: The proof is analogous to Lemma 3.1 of Jerbi et al. [JCOD23], which generalises the parameter shift rule
[SBG+19] to higher-order derivatives using the formulation from Cerezo et al. [CC21]. The approach requires
eigenvalues ±1, which is true for the C-RY gates in the Representer Raw-PQCs of Figure 1a–b; this can be seen by
constructing analogous circuits with uncontrolled RY gates (see e.g. [SBM06]).

The gradients of Representer Raw-PQCs are given by the parameter shift rule with one qubit rotations as

∂iπθ(a|s) = ∂i⟨Pa⟩s,θ =
⟨Pa⟩s,θ+π

2 ei − ⟨Pa⟩s,θ−π
2 ei

2
,

which is generalised to higher-order derivatives according to

∂απθ(a|s) =
1

2p

∑

ω

cω⟨Pa⟩s,θ+ω ,

where α ∈ [d]p, ω ∈ {0,±π/2,±π,±3π/2}p, and cω ∈ Z are integer (negative or non-negative) coefficients such that∑
ω |cω| = 2p.

The quantity Dp will be bounded by

Dp = max
s∈S,α∈[d]p

∑

a∈A

∣∣∣∣∣
1

2p

∑

ω

cω⟨Pa⟩s,θ+ω

∣∣∣∣∣

≤ max
s∈S,α∈[d]p

∑

a∈A

1

2p

∑

ω

|cω||⟨Pa⟩s,θ+ω|

= max
s∈S,α∈[d]p

1

2p

∑

ω

|cω|
∑

a∈A
|⟨Pa⟩s,θ+ω|

= 1 ,

where the last line follows from
∑

ω |cω| = 2p and
∑

a Pa = I . Since this result holds for all p ∈ N, it also hold that
D ≤ 1.



G Classical Central Differencing

We briefly summarise the proof of Jerbi et al. [JCOD23].

The remainder of the central differencing estimator is bounded by

|Rk
V | ≤ 2mkGk

k!
hk−1 ,

where Gk is an upper bound for V (k) in [s−mh, s+mh]. For an absolute error of at most ϵ, an upper bound on the
finite difference h is given by

h ≤
(

k!ϵ

4mkGk

) 1
k−1

= O
((

ϵ

Gk

) 1
k−1

)

Applying multivariate Monte Carlo (Appendix A) with a zero’th order boundG0 and precision ϵ/k for each c
(2m)
l V (s+lh)

h

in l = −m, . . . ,m, the required precision for V (s + lh) is given by ϵh

kc
(2m)
l

. Therefore, and with some additional

derivations, the query complexity is given by

n = Õ




m∑

l=−m

(
kc

(2m)
l G0

ϵh

)2



= Õ
((

G0k

ϵh

)2
)

= Õ



(
G0k

ϵ

(
Gk

ϵ

) 1
k−1

)2

 .

With upper bound D on the higher order partial derivatives of π, the higher order partial derivative of the value function
is bounded by

∂αV (s) ≤ 2rmax

1− γ (DT
2)k

:= Gk

for any k ≥ 0 following general combinatorial arguments for MDPs (see Lemmas F.2–F.4 in [JCOD23]). Substituting
x = 2rmax

ϵ(1−γ) , filling in k = log(x), and applying x1/ log(x) = e yields

n = Õ
((
x log(x)eDT 2

)2)

= Õ
((
xDT 2

)2)

= Õ
((

rmaxDT
2

ϵ(1− γ)

)2
)

for a single partial derivative, while for the full d-dimensional gradient one obtains

n = Õ
(
d

(
rmax

ϵ(1− γ)DT
2

)2
)
.

H Proof of bound B1

H.1 Proof for analytic Gaussian: B1 ≤ ANZ1− δ
2A

with probability 1− δ

The gradient is defined as

∇β log(π(a|s)) =
(
(a− µ(s))Σ−1

)
κ(s, :) ∈ CA×N .



For every j ∈ [A], (a[j]− µ(s)[j])Σ−1
jj ∈ N (0, 1).

Let Zj = (a[j]− µ(s)[j])Σ−1
jj and define δ > 0. Then the probability of observing any action dimension with a more

extreme Z-score is bounded by

P (∪Aj=1|Zj | > Z1− δ
2A

) ≤
A∑

j=1

P (|Zj | > Z1− δ
2A

)

= 2A(1− Φ(Z1− δ
2A

))

= δ .

Therefore with probability at least 1− δ, we have

B1 := ||∇β log(π(a|s))||1
= ||

(
(a− µ(s))Σ−1

)
κ(s, :)||1

=
∑

i,j

|Zjκ(s, ci)|

≤ ANZ1− δ
2A
κmax ,

where κmax ≥ κ(s, s′) for all s, s′ ∈ S.

H.2 Proof for finite-precision Gauss-QKP: B1 = O(1)

Note that the finite precision Gaussian will have support over some interval [li, ui] and Σi,i = Ω(ui − li) for all
i = 1, . . . , A. It follows that

||∇β log(π(a|s))||1 = ||
(
(a− µ(s))Σ−1

)
κ(s, :)||1

≤
∑

i,j

∣∣∣∣
ui − li
Σi,i

κ(s, cj)

∣∣∣∣

≤ O(NAκmax)

= O
(
LϵkA

αmax

)
(setting of N =

Lϵk
αmaxκmax

)

= O (1) . (since L ≤ αmax

ϵkA
)

I Derivation of analytical gradient

First note that

∇βµ(s) = (∂β1µ(s), . . . , ∂βd
µ(s))

= (K(s, c1), . . . ,K(s, cN )) .

If the policy centres exhaust the state-space, i.e. {c}Ni=1 = S, then this can be written as K(s, ·). However, this is
clearly not tractable in high-dimensional, continuous state spaces. Instead, we use the notation K(s, :) below to denote
vectorisation across the N policy centres. Therefore

∇β log(π(a|s)) = ∇µ log(π(a|s))∇βµ(s) (chain rule)

= ∇µ

(
log(Ce−

1
2 (a−µ(s))⊺Σ−1(a−µ(s)))

)
K(s, :) (product rule)

=

(
1

2
(a− µ(s))⊺Σ−11+

1

2
1⊺Σ−1 ∗ (a− µ(s))

)
K(s, :)

=
(
(a− µ(s))⊺Σ−1

)
K(s, :) ∈ CA×N .



Using the policy gradient theorem [SB18], the analytical policy gradient is given by

∇βV (s0) = E

[
T−1∑

t=0

∇ log(π(at|st))R(τ)
]

= E

[
T−1∑

t=0

(
(at − µ(st))⊺Σ−1

)
K(s, :)R(τ)

]
.

J Unbiased estimator lemma proof

By definition of Algorithm 1, the occupancy distribution is given by

ν̃(s, a) =

T−1∑

t=0

P (algorithm 1 returns (s, a) at step t|s0, a0)

=

T−1∑

t=0

(1− γ)γtPt(s, a|s0, a0, π)

= (1− γ)ν(s, a) .

K Circuit for actor-critic

The actor-critic relies on an oracle UX which allows occupancy-based sampling from a quantum oracle. Fig. 5 shows
an example circuit to implement UX .

Figure 5: The circuit UX for occupancy-based sampling to estimate the policy gradient within Compatible
Quantum RKHS Actor-Critic. The unitary Uγ |0⟩ = √γ|1⟩ +

√
1− γ|0⟩ is implemented based on multi-controlled

RY (2 sin
−1(γ)) gates. OX denotes another unitary defined by OX |s, a⟩|0⟩ = |s, a⟩|X(s, a)⟩, where X(s, a) =

Q̂(s, a)∇β log(π(a|s)). Other oracles have the meanings as defined in Section 2.4. The circuit for Deterministic
Compatible Quantum RKHS Actor-Critic is analogous but removes action controlled CNOT-gates and formulates the
OX oracle such that OX |s⟩|0⟩ = |s⟩|X(s)⟩, where X(s) = κ(s, ·)∇aQ̂(s, a)|a=µ(s).



L Bound on σ∇1 and improvement over B1

Note that the Gaussian QKP satisfies

σ∂(i, j) = SD(s,a)∼ν̃′(∂i,j log(π(a|s)))
= SD(s,a)∼ν̃′

(
Ziκ(s, c[j])/

√
Σii)

)

≤ max
s

SDa∼π(a|s)
(
Ziκ(s, cj)/

√
Σii)

)

= max
s
κ(s, cj)/

√
Σii

≤ κmax/
√

Σii .

where we note that Zi = (a[i]− µ(s)[i])Σ−1
ii ∼ N (0, 1/

√
Σii), and the upper bound on κ (e.g. for quantum kernels,

κ(s, cj) ≤ 1 for all state-pairs). Therefore, we set the upper bound according to

σ∇1
= ∥σ∂(:)∥1
=

κmaxNA

mini
√
Σii

) .

Note that this bound yields O(κmaxNA) as the bound for B1 in the finite-precision Gaussian (Appendix H.2); however,
note that the improvement increases as the precision of the Gaussian (i.e. its range) increases. Specifically, for a
precision such that the range [li, ui]

d
i=1 has support, the improvement ratio is at least

∑A
i=1

∑N
j=1

ui−li
Σi,i

κ(s, cj)
∑A

i=1

∑N
j=1 κ(s, cj)/

√
Σii

≥ min
i

Aui−li
Σi,i

∑N
j=1 κ(s, cj)

A
∑N

j=1 κ(s, cj)/
√
Σii

= min
i

ui − li√
Σi,i

.

M Compatible Quantum RKHS Actor-Critic query complexity (Theorem 6.2)

a) Define normalisation constant Z = 2dξ(p)ϵQBp. Query the oracle UX̃ , where X̃ refers to the d-dimensional random

variable given by X̃(s, a) =
(Q̂(s,a)−b(s))∇µ log(π(a|s))

Z . Each such query takes T = O(T ) time steps of interactions



with the environment. It follows that

√
Tr(ΣX̃) =

√√√√
d∑

i=1

Var(X̃i)

≤ max
s,a

√√√√
d∑

i=1

(
X̃i − E[X̃i]

)2
(definition of variance)

≤ max
s,a

∥∥∥X̃ − E[X̃]
∥∥∥
2

(definition of ℓ2 norm)

≤ max
s,a

(∥∥∥X̃
∥∥∥
2
+
∥∥∥−E[X̃]

∥∥∥
2

)
(triangle inequality)

≤ max
s,a

2
∥∥∥X̃
∥∥∥
2

(drop the sign and ∥E[X]∥2 ≤ max
s,a
∥X∥2)

= max
s,a

2

Z

∥∥∥(Q̂(s, a)− b(s))∇µ log(π(a|s))
∥∥∥
2

(definition of X̃)

≤ 2

Z
max
s,a

∥∥∥Q̂(s, a)− b(s)
∥∥∥
2
max
s′,a′
∥∇µ log(π(a

′|s′))∥2 (Cauchy-Schwarz and maximum)

=
2

Z
max
s,a
|Q̂(s, a)− b(s)|max

s′,a′
∥∇µ log(π(a

′|s′))∥2 (Q̂(s, a)− b(s) is one-dimensional)

≤ 2

Z
max
s,a
|Q̂(s, a)− b(s)|max

s′,a′
dξ(p) ∥∇µ log(π(a

′|s′))∥p (Hölder’s inequality)

≤ 2

Z
dξ(p)ϵQBp (definition of ϵQ and Bp

= 1 .

Following Theorem 3.4 in [CHJ22], the QEstimator algorithm will return an ϵ/Z-correct estimate X̄ such that

∥∥∥X̄ − E[X̃]
∥∥∥
∞
≤
√
Tr(ΣX̃) log(d/

√
δ)

n

≤ log(d/
√
δ)

n

with probability at least 1− δ.

Following Lemma 6.3, we note that E[X] = 1
1−γ (E[X̃]− γTX(0, 0)). Consequently, subtracting the known constant

γTX(0, 0) and converting the state-action occupancy distribution to the occupancy measure,

ν(s, a) =
1

1− γ ν̃(s, a) ,

it follows that an ϵ-correct estimate for E[X] is obtained within

n ≤ 2dξ(p)ϵQBp log(d/
√
δ)

(1− γ)ϵ

= Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)

O(T ) time steps of interactions with the environment.



b) Defining normalisation constant Z = dξ(p)ϵQσ∇p , and querying the oracle UX̃ based on the d-dimensional random

variable X̃ =
(Q̂(s,a)−b(s))∇µ log(π(a|s))

Z , it follows that

√
Tr(ΣX̃) =

√√√√
d∑

i=1

Var(X̃i)

=
1

Z

√√√√
d∑

i=1

Varν̃′(Xi) (definition of X̃i)

=
1

Z

√√√√
d∑

i=1

E
[(
Q̂(s, a)− b(s))∂i log(π(a|s))− E[(Q̂(s, a)− b(s))∂i log(π(a|s)]

)2]
(definition of Xi and variance)

≤ 1

Z

√√√√
d∑

i=1

E
[
max
s′,a′
|Q̂(s′, a′)− b(s′)| ∂i log(π(a|s))−max

s′,a′
|Q̂(s′, a′)− b(s′)|E[∂i log(π(a|s)]

]2

(maximum over first term)

=
1

Z

√√√√
d∑

i=1

max
s′,a′
|Q̂(s′, a′)− b(s′)|2E

[
(∂i log(π(a|s))− E[∂i log(π(a|s)])2

]
(first term outside parentheses) ≤ 1

Z

√√√√
d∑

i=1

ϵ2Qσ∂(i)
2 (definition of ϵQ and σ∂)

≤ 1

Z
∥ϵQσ∂(:)∥2 (Cauchy-Schwarz and definition of ℓ2 norm)

≤ 1

Z
dξ(p) ∥ϵQσ∂(:)∥p (Hölder’s inequality)

≤ 1

Z
dξ(p)ϵQσ∇p (definition of σ∇p )

= 1 (definition of Z) .

Following steps analogous to a), the QEstimator algorithm returns an ϵ-correct estimate for E[X] within

n ≤
dξ(p)

∥∥ϵQσ∇p

∥∥
p
log(d/

√
δ)

(1− γ)ϵ

= Õ
(
dξ(p)

∥∥ϵQσ∇p

∥∥
p

(1− γ)ϵ

)

O(T ) time steps of interactions with the environment.

N Total query complexity of Compatible Quantum RKHS Actor-Critic

N.1 Tabular averaging critic (Corollary 6.2)

Let δ1, δ2 ∈ (0, 1) such that δ = δ1δ2 represent failure probability upper bounds for the policy gradient and critic error,
respectively. We will prove the query complexity for both failure probabilities separately and then note that both query
complexities must hold with probability at least 1− δ.

For the (classical) Compatible RKHS Actor-critic, the same samples are used for the critic and policy gradient estimates.
Therefore, taking the worst-case of the query complexities for the policy gradient and the critic yields the desired result.
For the critic, the number of queries n2 relates to the total number of state-action samples as n2 = m

2T = O(m/T ).
Then apply the classical multivariate Monte Carlo (see Appendix A) based on the |S × A|-dimensional vector of
Q-values. Since each state-action pair is sampled independently, at least m|S × A| samples are required to ensure m
samples per state-action pair. However, we can drop the factor |S × A| from the big O notation due to the limited



tabular state-action space. Consequently, with probability at least 1− δ2
m = O

(
V 2

max log(1/δ2)

ϵ′2

)

= Õ
(
V 2

max

ϵ′2

)

= Õ
(
dξ(p)TϵQBp

(1− γ)ϵ

)

n2 = Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)
. (55)

For the policy gradient, with probability at least 1− δ1, the number of queries is bounded by (see Eq. 44)

n1 = O
(
d2ξ(p)ϵ2QB

2
p + ∥ΣX∥ log(d/δ1)
(1− γ)2ϵ2

)

= Õ
(
d2ξ(p)ϵ2QB

2
p + ∥ΣX∥

(1− γ)2ϵ2

)
.

Note that n1 > n2 such that with probability 1− δ, the number of total queries is bounded by

n = Õ
(
d2ξ(p)ϵ2QB

2
p + ∥ΣX∥

(1− γ)2ϵ2

)
.

For Compatible Quantum RKHS Actor-critic (see Algorithm 2), n1 queries to a T -step implementation of UX are used
for quantum policy gradient estimates while n2 queries to 2T -step implementations of UP and UR are used for the
critic estimate, both of which represent O(T ) steps of environment interaction. The result for n2 follows directly from
Eq. 55. The result for n1 is given by (see Eq. 44)

n1 = O
(
dξ(p)ϵQBp log(d/δ1)

(1− γ)ϵ

)

= Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)
.

Summing the two query complexities yields the total query complexity, such that with probability 1− δ

n = Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)
+ Õ

(
dξ(p)ϵQBp

(1− γ)ϵ

)

= Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)
.

N.2 Kernel ridge regression critic (Corollary 6.3)

From Eq. 27, it follows that

m = OP

((∥∥∥Q̂−Q
∥∥∥
L2

) l
2l+d

)

= OP

(
ϵ′−

l
2l+d

)

= OP

(
ϵ′−

1
4

)
,

where the last step follows from l > d/2 as in the preconditions of Lemma 3.4. Since ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)ϵQBp

)4
, it follows

that

m = OP

(
ϵ′−

1
4

)

= OP

(
Tdξ(p)ϵQBp

(1− γ)ϵ

)



and therefore that

n2 = OP

(
dξ(p)ϵQBp

(1− γ)ϵ

)
.

Consequently, with high probability 1− δ2 for some δ2 > 0, the desired ϵ′ bound can be obtained within

n2 = Õ
(
dξ(p)ϵQBp

(1− γ)ϵ

)

queries. The remainder of the proof is completely analogous to the proof of Corollary 6.2.

O Total query complexity of Deterministic Compatible Quantum RKHS Actor-Critic

O.1 Tabular averaging critic (Corollary 6.6)

Note that both UX (for the policy gradient) as well as UP and UR (for the critic) require T = O(T ) time steps of
environment interactions per call. The proof follows similar reasoning as in Corollary 6.2. Since p ∈ [1, 2], note that
dξ(p) = 1. Denote n1 as the number of queries for computing the policy gradient and n2 as the number of queries for
computing the critic. Note that

m = Õ
(
V 2

max

ϵ′2

)

= Õ
(

TCp

(1− γ)ϵ

)

n2 = Õ
(

Cp

(1− γ)ϵ

)

for both algorithms (since the critic is classical in both cases).

Sum n1 (given by Eq. 52) and n2 to obtain the query complexity for Deterministic Compatible Quantum RKHS
Actor-Critic,

n = Õ
(

Cp

(1− γ)ϵ

)
+ Õ

(
Cp

(1− γ)ϵ

)

= Õ
(

Cp

(1− γ)ϵ

)
.

To obtain the query complexity for (classical) Deterministic Compatible RKHS Actor-Critic, take the maximum of n1
and n2, obtaining

n = Õ
(

C2
p

(1− γ)2ϵ2

)
.

The quantum algorithm therefore yields a quadratic improvement.

O.2 Kernel ridge regression critic (Corollary 6.7

Due to setting ϵ′ ≥
(

(1−γ)ϵ
Tdξ(p)Cp

)4
, we obtain

m = OP

(
ϵ′−1/4

)
(see proof of Corollary 6.3)

= OP

(
Tdξ(p)Cp

(1− γ)ϵ

)

n2 = OP

(
dξ(p)Cp

(1− γ)ϵ

)

queries for the critic samples. Therefore, with high probability 1 − δ2 for some δ2 > 0, the desired ϵ′ bound
can be obtained within n2 = Õ

(
dξ(p)Cp

(1−γ)ϵ

)
queries. The remainder of the proof is completely analogous to that of

Corollary 6.6.
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[LM19] Gábor Lugosi and Shahar Mendelson. Mean Estimation and Regression Under Heavy-Tailed Distributions:
A Survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

[LS15] Guy Lever and Ronnie Stafford. Modelling policies in MDPs in reproducing kernel Hilbert space. Journal
of Machine Learning Research, 38:590–598, 2015.
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