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Introduction. In light of the spectacular success of classical machine learning and the ever-
improving experimental means to perform quantum computing, the potential and limitations of quan-
tum machine learning (QML) have become a question of widespread interest. It is known that quantum
systems can perform learning tasks that are beyond the capabilities of classical computers [1–4]. At
the same time, there is growing evidence that the training of quantum learning models is hindered by
severe problems not present in classical machine learning. Due to their probabilistic nature, computing
gradients is inherently more costly for quantum learning models. Adding to that, investigations in recent
years revealed that the cost landscape of quantum learning models contains many bad minima and vast
areas of vanishing gradients, so-called Barren plateaus, that preclude trainablity [5–10]. To overcome
these issues, it is necessary to implement a favorable inductive bias through the model architecture or
training procedure that steers the optimization problem away from these obstructions. Despite consider-
able research efforts in this direction, the engineering of inductive bias remains a challenging problem
central to the field of quantum machine learning [11–16]. There is an urgent need for novel methods and
techniques to address this challenge.

Main ideas. Traditionally, training examples are presented to the learner in random order. This holds
true in both quantum and classical machine learning. However, on the classical side, there is an increasing
awareness that imposing an order on the training data can speed up convergence or enable the learner to
reach better local minima. In practice, the ordering is usually determined by a scoring function. Training
starts on examples with low scores and increasingly includes data with higher scores as the training
progresses. This idea comes in many different flavors and with various theoretical underpinnings, with
the most well-known examples being curriculum learning [17] and hard example mining [18]. These
strategies differ primarily in their approach to devising good scoring functions. In hard example mining,
one aims to identify examples that are difficult to classify, expecting the learner to learn most effectively
from these. The opposing viewpoint is taken in curriculum learning, where the learner progresses to
hard examples only at a later stage in training, an approach inspired by human learning. Both (and
other) strategies can lead to success, which is why here we take an agnostic stance on the question of
design principles. Ultimately, the quality of a scoring function is decided by empirical performance.
The general idea to impose an ordering upon the training data has a proven track record in a wide range
of classical machine learning applications, including natural language processing, computer vision and
others [18–26].

Imposing an ordering on training data has the potential to address and ease many of the challenges
inherent to quantum machine learning. We show that scoring functions provide a versatile framework
to incorporate inductive bias into quantum models. To this end, we draw connections to the theory of
Barren plateaus and introduce a novel complexity measure for data-encoding quantum states, which gives
rise to a natural scoring function to ease the problem of vanishing gradients. To our knowledge, this is
the first method that addresses data-induced Barren plateaus, namely, trainability issues that arise from
the input states. Generally, scoring-based training can be seen as an instance of warm-starting methods,
which have taken a prominent position as candidates for addressing Barren plateaus [27–29]. We further
showcase the potential of ordering training data by applying different scoring functions from curriculum
learning and hard example mining to state-of-the-art applications in quantum machine learning. We
observe that even straightforward strategies can lead to considerable improvements in convergence speed
and overall accuracy of the quantum models.
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Preliminaries. We consider a supervised learning scenario with training data X = {Xi}Ni=1 =
{|ψi⟩ , yi}Ni=1 with data-encoding quantum states |ψi⟩ ∈ H and labels y ∈ Y and a learning model fϑ :
H → X with trainable parameters ϑ. The goal is to minimize the loss ℓ(ϑ; (|ψ⟩ , y)). Traditionally, the
learner has access to the whole training data X from the beginning of training. A common strategy is then
to randomize the ordering in X, split it into mini-batches Bi and perform gradient based optimization.
Here, we deviate from this setting by introducing a scoring function s : H → [0, 1] which assigns a score
s(|ψ⟩) to every data point |ψi⟩. From now on, we consider X to be ordered in ascending value of s(|ψi⟩)
and denote with Xα the subset that includes training examples up to index α. Additionally, we define a
pacing function p : N → {1, 2, . . . , N}. At an epoch t, the learner then has access to the training data
Xp(t). Pacing functions are usually chosen to be monotonically increasing functions. Most commonly,
they are chosen to be simple step function with a constant step size [19].

A common approach to obtain a scoring function is to train the learner first on the unordered dataset X,
resulting in a hypothesis fϑ̃. Then, the corresponding loss ℓϑ̃ is used as a scoring function and the training
data is ordered either from low to high loss (curriculum learning) or from high to low (hard example
mining). A similar, less costly method is so-called self-paced learning. During training, the hypothesis
fϑ is continually updated. In self-paced learning, the loss ℓϑ corresponding to the current hypothesis fϑ
is used to order the training data for the next epoch. Another approach is to first train another, simpler
classifier gϑ, for example a support vector machine, on X and use again the corresponding loss function
ℓϑ as a scoring function. We also explore an innovative approach leveraging inherently quantum scoring
functions. Specifically, we investigate the use of the g-purity Pg(|ψi⟩) of training states, a metric known
to influence the occurrence of barren plateaus in quantum machine learning [5]. By ordering the training
set based on this purity, we aim to mitigate the detrimental effects of barren plateaus and improve model
performance.

Results. Due to space limitations, we highlight the application of our framework to quantum phase
recognition with self-paced learning. We demonstrate its effectiveness on two paradigmatic quantum spin
chains: the generalized cluster model [30] and the bond-alternating XXZ model [31]. Their ground-state
phase diagrams are presented in Fig. 1.

Figure 1. Ground-state phase diagrams of (a) the gen-
eralized cluster Hamiltonian, exhibiting (I) symmetry-
protected topological, (II) ferromagnetic, (III) anti-
ferromagnetic, and (IV) trivial phases; and (b) the bond-
alternating XXZ Hamiltonian, displaying (I) trivial, (II)
symmetry-broken antiferromagnetic, and (III) topologi-
cal phases.

We leverage the quantum convolutional neu-
ral network (QCNN) architecture introduced in
Ref. [32] for the phase classification tasks. Our
QCNN maps an n-qubit input state vector |ψ⟩ into
a 2-qubit output state, where the predicted label ŷ
is derived from the probabilities measured in the
computational basis:

|ψ⟩ 7→ (pj)j∈{0,1}2 7→ ŷ := (p00, p01, p10, p11) .

Each component of ŷ represents a distinct phase
class. In our experiments, we utilize 50 ground
states for training and 1000 samples from the
same distribution for testing.

Self-paced learning. Self-paced learning dy-
namically prioritizes training data based on the
current model’s performance. At each epoch, we
rank the training set by the loss of each data point.

With minibatches of size 10, we explore four strategies using a monotonically increasing pacing func-
tion, which gradually exposes more data points as training progresses: (1) Vanilla; standard training
with no specific ordering nor pacing function, (2) Easy; prioritizes points with lower loss values (eas-
ier examples), (3) Hard; prioritizes points with higher loss values (harder examples), and (4) Hardest;
employs a constant pacing function and always trains on the 10 most difficult examples. As shown in
Fig. 2, the Vanilla and Easy strategies yield comparable performance, reaching a final accuracy of nearly
80%. The Hard strategy initially performs well but regresses to a similar level as more data points are
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included (due to the monotonically increasing pacing function). In stark contrast, the Hardest strategy,
focusing solely on the most difficult examples, rapidly converges to near-perfect accuracy on the training
set and over 90% on the test set. This highlights the inductive bias introduced by a specific training data
order, demonstrating that the hardest-to-classify examples are the most informative for quantum phase
recognition. This finding may not be the case for other strategies and machine learning tasks, as easier
examples may sometimes be more informative.
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Figure 2. (a) Generalized cluster Hamiltonian and (b)
alternating-bond XXZ Hamiltonian

Accuracy at the cost of confidence. To
further understand the differences between the
Vanilla and Hardest self-paced learning strate-
gies, we zoom-in cut along the j2 coupling con-
stant (fixing j1 = 1) and j1/j2 (fixing δ = 3)
for the respective Hamiltonians (dashed lines in
Fig. 1). Fig. 3 shows the probabilities of mea-
suring each basis vector along these lines, with
the highest probability determining the predicted
phase. The Hardest approach demonstrates su-
perior accuracy, both within each phase region
and at the boundaries between phases. Interest-
ingly, however, the Hardest approach exhibits less
confidence in its predictions, as indicated by the
smaller differences between the probabilities of
different classes. This suggests a potential trade-
off between accuracy and confidence in this spe-
cific context.

Summary and outlook. The trainability of
quantum machine learning models is a pressing

challenge due to the prevalence of barren plateaus and the high cost of gradient computation. This
submission introduces an approach to address these issues by strategically ordering the training data.
This method, which gradually adjusts the complexity of the training data, can be seen as incorporating an
inductive bias into quantum models, leading to improved convergence speed and overall accuracy. While
this extended abstract focuses on a specific strategy and quantum phase recognition task, our approach
broadly applies to other strategies and QML tasks, such as unitary learning or quantum error correction.
We consider this submission to underscore the potential of introducing inductive bias through the training
data as a powerful tool for mitigating the challenges of barren plateaus and enhancing trainability of QML
models.
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Figure 3. (Left) Generalized Cluster Hamiltonian and (Right) bond-alternating XXZ Hamiltonian for (a) Vanilla
and (b) Hardest. The background color of each panel indicates the true quantum phase of the system. A correct
classification occurs when the highest probability color matches the background color of the panel.
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