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In this work, we present a hereto-
fore unseen application of Ising machines
to perform trust region-based optimisa-
tion with box constraints. This is done
by considering a specific form of opto-
electronic oscillator-based coherent Ising
machines with clipped transfer functions,
and proposing appropriate modifications
to facilitate trust-region optimisation. The
enhancements include the inclusion of
non-symmetric coupling and linear terms,
modulation of noise, and compatibility
with convex-projections to improve its
convergence. The convergence of the mod-
ified Ising machine has been shown un-
der the reasonable assumptions of convex-
ity or invexity. The mathematical struc-
tures of the modified Ising machine and
trust-region methods have been exploited
to design a new trust-region method to ef-
fectively solve unconstrained optimisation
problems in many scenarios, such as ma-
chine learning and optimisation of param-
eters in variational quantum algorithms.
Hence, the proposition is useful for both
classical and quantum-classical hybrid sce-
narios. Finally, the convergence of the
Ising machine-based trust-region method,
has also been proven analytically, estab-
lishing the feasibility of the technique.

1 Introduction
Ising models have traditionally been used to
solve NP-hard combinatorial optimisation prob-
lems [1, 2] by exploiting the adiabatic evolution
of a physical system. Specifically, such prob-
lems are solved by mapping them to the ground-
state search problem of the Ising model [3], where
the ground state encodes its optimal solution.
Sayantan Pramanik: sayantan.pramanik@tcs.com

Among various methods of realizing an Ising
model of coupled artificial spins [4, 5, 6], an im-
portant approach is to utilise opto-electronic-
oscillators (OEOs) for building a coherent Ising
machine (CIM) [7, 8, 9]. A CIM implements
a network of artificial spins with bistable co-
herent optical states for mapping the optimisa-
tion problems to the ground state of the Ising
model [3, 7]. The OEO-based CIM approach par-
ticularly stands out for its cost-effectiveness, am-
bient operation, and scope for miniaturization [9].
Being inherently gain dissipative, it naturally ap-
proaches the optimal solution [7, 10].

In this work, we present a new application of
OEO-CIMs to unconstrained optimisation. This
is the first time we have analytically proven
the viability of Ising machines to perform trust-
region-based optimization [11, 12, 13] and refer
to the technique as iTrust. We refer the reader
to [11] for a comprehensive overview of trust-
region methods. The main advantage of iTrust
stems from the avoidance of matrix-inversion,
along with the other aforementioned benefits of
OEO-CIMs. This opens up a new avenue of ap-
plications where the Ising machines may be used
to optimise the parameters in arbitrary objective
functions, with an important example being the
objective (loss/reward/penalty) functions of ma-
chine learning (ML) [14, 15, 16], quantum ML
(QML) [17, 18, 19], and quantum-inspired ML
(QiML) [20] models and variational quantum al-
gorithms (VQAs) [21]. Hence, iTrust finds appli-
cability in both classical and quantum-classical
hybrid computing. More generally, the optimi-
sation of any parametrised, unconstrained objec-
tive function f : Rn → R is within the purview
of iTrust. We denote the parameters of the ob-
jective function f(·) with the vector θ ∈ Rn. For
completeness, the overarching problem that we
attempt to solve using iTrust is:
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Problem 1.
min
θ∈Rn

f(θ), (1)

with the aim of finding a point θ∗ which satis-
fies second-order optimality conditions [11], un-
der the following generic assumption [11]:
Assumption 1. If θ(0) is the starting point of
an iterative algorithm, then the function f(·) is
bounded below on the level set S = {θ | f(θ) ≤
f(θ(0))} by some value f∗, such that f∗ ≤
f(θ) ∀ θ ∈ S. Further, f is twice continuously
differentiable on S.

The remainder of this extended abstract is or-
ganised as follows: we propose essential modifi-
cations to a specific type of CIMs to make them
compatible for trust-region optimisation in Sec-
tion 2, and analytically examine its performance
on convex objective functions with bounded gra-
dients, and on smooth, locally invex [22] functions
in Section 2.1. Finally, we describe the proposed
algorithm iTrust in Section 3, before showing its
convergence to second-order optimal solutions of
Problem 1 in Theorem 3. Conclusions and future
outlook are in Section 4.

2 Economical Coherent Ising Machine
For iTrust, we consider the poor man’s CIM in-
troduced in [7] with clipped nonlinearity [8], and
refer to it as the Economical CIM (ECIM). It is
then modified to find ε-suboptimal solutions of
the following problem with J as the coupling-
matrix, and h as the external field:
Problem 2.

min
s∈[−∆,∆]n

(
E(s) ∆= 1

2 ⟨s, Js⟩+ ⟨h, s⟩
)

(2)

Inspired by an earlier work [23], our modifi-
cations include setting α = 1 and viewing β
as the step-size in equation 8 of [8]. The vari-
ance of the injected noise is modulated, and vary-
ing step-sizes βk are considered to facilitate bet-
ter convergence. Provisions for accommodating
non-symmetric coupling and linear terms are also
made without relying on ancillary spins [24, 9].
The clipping voltage is set to ±∆, and finally,
the ECIM is made compatible with the definition
of projection to the convex box C = [−∆, ∆]n.
As a result, the iterative update equation of the
modified ECIM is given by:

s(k+1) = ΠC

(
s(k) − βk

(
∇E(s(k))− ζ(k)

))
,

(3)

where ζ(k) ∼ N (0, σ2I), and ΠC(·) is the projec-
tion operator to C.

2.1 Convergence of ECIM
In this section, we present the convergence-results
of the modified ECIM through the following in-
formal Theorems. Their formal statements and
proofs have not been included for adherence to
the page-limits.

Theorem 1 (Informal). For convex E(·) with
bounded gradients, the ECIM in equation (3)
finds an ε-suboptimal solution to Problem 2 in C

with fixed step-sizes in O(1/ε2) iterations. With
diminishing step-sizes such that

∑∞
k=0 βk = ∞

and
∑∞

k=0 β2
k < ∞, limk→∞(E(s(k)) − E∗) = 0,

where E∗ = mins∈C E(s).

Theorem 2 (Informal). For smooth and locally
invex E(·), the ECIM in equation (3) finds an ε-
suboptimal solution to Problem 2 in C with fixed
step-sizes in O (ln (1/ε)) iterations.

If s is the output of the ECIM, then the above
results may be unified into the following equation
for some constant c ∈ (0, 1], as suggested in [13]:

−E(s) ≥ c|E(s∗)|. (4)

3 iTrust
Very briefly, the update p∗

(t) to θ(t) at the iter-
ation t of a Newton-like trust-region method is
found from the minimiser of:
Problem 3.

min
||p||2≤δt

(
mt(p) ∆= ⟨∇f(θ(t)), p⟩+ 1

2 ⟨p, H(θ(t))p⟩
)

,

(5)

where ∇f(θ(t)) and H(θ(t)) are the gradient and
Hessian of f at θ(t), respectively. A major dis-
advantage of using the method proposed in Al-
gorithm 3.14 proposed in [13] to find p∗

(t) is the
repeated requirement for Cholesky decomposition
and inversion of the Hessian, both of which are
in O(n3). This becomes prohibitively expensive
for problems where n is large, for instance ma-
chine learning models with millions of parame-
ters. We aim to alleviate this problem by using
the enhanced ECIM to find p∗

(t). We achieve this
by exploiting the structural similarity Problems
2 and 3. Specifically, at each iteration t, J is set
to H(θ(t)), h to ∇f(θ(t)), and ∆ to δt. Here,
the importance of the inclusion of linear terms in
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the Ising machine becomes clear, without which
the gradient ∇E(s(k)) could not have been pro-
vided to the ECIM without additional overheads
in the form of ancillary spins [23, 24]. Also, by de-
sign, the constraint set of Problem 3 is contained
in [−∆t, ∆t]n. As a result, it is guaranteed that
Et(s∗

(t)) ≤ mt(p∗
(t)). We name this technique of

using the ECIM for trust-region optimisation as
iTrust. The workflow for iTrust has been por-
trayed in Algorithm 1, which draws inspiration
from, and is an amalgamation of, Algorithms 4.1
and 4.2 of [11, 13], respectively.

We claim that this technique of employing EC-
IMs to solve the subproblem of trust-region meth-
ods converges (or tends to converge to) second-
order optimal solutions of Problem 1 in S. This
claim is formalised in the form of the following
theorem [11, 13], the proof of which has been
omitted for brevity:
Theorem 3 (Convergence of iTrust). Let as-
sumption 1 be true, and let (θ(t)) be the sequence
of iterates generated by Algorithm 1 such that
equation (4) is satisfied at each iteration. Then
we have that:

lim
t→∞
||∇f(θ(t))||2 = 0. (6)

Moreover, if S is compact, the either Algorithm 1
terminates at a point θ(T ) ∈ S where ∇f(θ(T )) =
0 and H(θ(T )) ≽ 0; or (θ(t)) has a limit point
θ∗ ∈ S such that ∇f(θ∗) = 0 and H(θ∗) ≽ 0.

4 Conclusions and Outlook
In this paper, we introduced iTrust, an algo-
rithm that leverages Ising machines for trust-
region based optimisation. In doing so, we pro-
posed necessary modifications to the Ising ma-
chine, and proved the feasibility and convergence
of iTrust. We look forward to validate our theo-
retical results by experimenting extensively with
the proposed algorithm. Possible future direc-
tions may include the investigation of the perfor-
mance of the ECIM for other classes of objective
functions besides convex and invex ones. Variants
of iTrust can also be constructed that are com-
patible with natural gradient descent [25, 26], by
replacing the Hessian with the Fisher Informa-
tion Matrix. iTrust may be further augmented
by zeroth order methods like SPSA [27] in sce-
narios where evaluation of the gradients, Hessian,
and Fisher information matrix is computation-
ally expensive [28]. Lastly, the advantages of the

Algorithm 1: i Trust
input: initial point θ(0) ∈ Rn; maximum

trust-region radius δmax > 0;
initial radius δ0 ∈ (0, δmax];
thresholds on ρt: 0 < µ < η < 1;
radius-updation parameters γ1 < 1
and γ2 > 1; noise variance σ2;
sequence of step-sizes (βk); and
number of iterations T and K

1 begin
2 for t ∈ [T ] do
3 evaluate ∇f(θ(t)) and H(θ(t));
4 J (t) ←H(θ(t));
5 h(t) ← ∇f(θ(t));
6 ∆t ← δt;
7 initialise s(0) randomly in

Ct = [−∆t, ∆t]n;
8 for k ∈ [K] do
9 sample ζ(k) ∼ N (0, σ2I);

10 s(k+1) =
ΠCt

(
s(k) − βk

(
∇Et(s(k))− ζ(k)

))
;

11 end
12 calculate ρt = f(θ(t)+s(K))−f(θ(t))

Et(s(K)) ;
13 if ρt < µ then
14 δt+1 = γ1δt;
15 continue;
16 else
17 if ρt > (1− µ) and

||s(K)||∞ = δt then
18 δt+1 = min(γ2δt, δmax);
19 else
20 δt+1 = δt;
21 end
22 end
23 if ρt > η then
24 θ(t+1) = θ(t) + s(K);
25 else
26 θ(t+1) = θ(t);
27 end
28 end
29 return θ(T )

30 end
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ECIM over noisy projected gradient descent for
the subproblem-minimisation can also be exam-
ined. We hope that this paper opens up new av-
enues of research in the analytical and empirical
exploration of new applications of Ising machines.
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