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ABSTRACT

Classical information loading is an essential task for many processing quantum algorithms, constituting a cornerstone in the
field of quantum machine learning. In particular, the embedding techniques based on Hamiltonian simulation techniques enable
the loading of matrices into quantum computers. A representative example of these methods is the Lloyd-Mohseni-Rebentrost
protocol, which efficiently implements matrix exponentiation when multiple copies of a quantum state are available. However,
this is a quite ideal set up, and in a realistic scenario, the copies are limited and the non-cloning theorem prevents from producing
more exact copies in order to increase the accuracy of the protocol. Here, we propose a method to circumvent this limitation by
introducing imperfect quantum copies that significantly enhance the performance of previous proposals. This abstract is based
on Ref. [1].

The LMR protocol, introduced in Ref. [2], serves as the foundation for numerous fault-tolerant quantum machine learning
algorithms [3–5] and is also significant for efficient Hamiltonian simulation [6]. Given n copies of a quantum state ρ, this
protocol strives to implement the complex exponentiation of the quantum state ρ, acting on a quantum state σ for a time t, i.e.
e−iρt σ eiρt. Each step of this methodology uses a single copy of ρ and implements an operation on the state of the system σ
described by the quantum channel

TLMR(σ) = tr2[e−i∆tS (σ ⊗ ρ) ei∆tS ] = cos2 ∆t σ + sin2 ∆t ρ − i sin∆t cos∆t [ρ, σ]. (1)

Therefore, using this operation n times and taking ∆t = t/n we can implement the target operation with error

εLMR(n) =
∥∥∥T n

LMR(σ) − e−iρt σ eiρt
∥∥∥

1 =
t2

2n

∣∣∣∣∣∣ [ρ, σ]2 + 2(ρ − σ)
∣∣∣∣∣∣

1 + O(t3/n2). (2)

Hence, to simulate e−iρt σ eiρt up to an accuracy ε, n ∼ O(t2/ε) original copies of ρ become needed. Additionally, in [6] this
protocol was shown to be optimal with respect to the number of copies required in the asymptotic limit, reducing the opportunity
for improvement of the protocol to get a better prefactor in the error term or to generate more (imperfect) copies of the state.
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Ô(k)
c

e−iSδt

e−iSδt

…

e−iSδt

……

Tk(σ)

ρ(k) =
d

∑
i=1

pi |ψi⟩⟨ψi |
⊗k

…

e−iρtσeiρt + "(t2 /n)
ρρ ρ

T nLMR :

…
ρ(k)

Δt = t /n

δt = Δt /kT n
k :

t

δt δt δt δt δt δt δt δt δt

……Δt Δt Δt

<latexit sha1_base64="8xRMY/ssllfkAL7DwOUlfCXUgcQ=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBhMhXsJuwNct4MVjBPOAZAmzk9lkzOzMMjMrhCX/4MWDIl79H2/+jZNkD5pY0FBUddPdFcScaeO6305ubX1jcyu/XdjZ3ds/KB4etbRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8e3Mbz9RpZkUD2YSUz/CQ8FCRrCxUqtcYey83C+W3Ko7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrz2UybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpatap3Wb24r5XqN1kceTiBU6iAB1dQhztoQBMIPMIzvMKbI50X5935WLTmnGzmGP7A+fwBEq+OIA==</latexit>

(ii)
<latexit sha1_base64="YHgGYGdBESD5GPjs+r76JPH3ZDQ=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbZCvZTdgl+3ghePFVxbaJeSTbNtaDZZkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD48etQyVYT6RHKpOiHWlDNBfcMMp51EURyHnLbD8e3Mbz9RpZkUD2aS0CDGQ8EiRrCxkl+tsfNqv1xx6+4caJV4OalAjla//NUbSJLGVBjCsdZdz01MkGFlGOF0WuqlmiaYjPGQdi0VOKY6yObHTtGZVQYoksqWMGiu/p7IcKz1JA5tZ4zNSC97M/E/r5ua6DrImEhSQwVZLIpSjoxEs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnls1L3L+sV9o9K8yeMowgmcQg08uIIm3EELfCDA4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBNCY2t</latexit>

(i)

ρ(k) ρ(k)

FIG. 1. (i) LMR protocol for a single original copy of ρ asissted by biomimetic cloning using the eigenbasis of ρ as the preferred basis for
the cloning. S denotes the swap operation, pi the eigenvalues of ρ and Tk(σ) the output of the combined operation. (ii) Distribution of time
intervals for the combined protocol. To implement the exponentiation of ρ for a time t with n copies, initially, time intervals of duration
∆t = t/n are considered. When introducing biomimetic copies, each interval is subdivided into k intervals of duration δt = ∆t/k.
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The no-cloning theorem in quantum information states the impossibility of perfectly copying an arbitrary unknown quantum
state. However, cloning a set of orthogonal states is allowed. The biomimetic cloning of quantum observables, referred to as
Ôc, leverages this fact by performing the operation Ôc|ψ j⟩ → |ψ j⟩ ⊗ |ψ j⟩, where {|ψ j⟩}

d
j=1 is the eigenbasis of certain observable,

whose statistics will be exactly replicated by the biomimetic copies. Hence, given a quantum state ρ =
∑d

i, j=1 ρi j |ψi⟩ ⟨ψ j|, we can
generate k biomimetic copies of this state that we denote as

Ô(k)
c (ρ) =

d∑
i, j=1

ρi j

(
|ψi⟩ ⟨ψ j|

)⊗k
≡ ρ(k). (3)

Now we can combine both, the LMR opearation and the biomimetic cloning machine in the following way. From each ρ we
will create k biomimeitc copies taking ρ as the observable and we will apply the LMR protocol to each of those copies for time
intervals of length δt = ∆t/k as depicted in Figure 1. Considering the limit where k is large for analytical calculation purposes,
we obtain the asymptotic error of the LMR assisted with infinite biomimetic copies

εBIO(n→nk) =
∥∥∥T n

BIO(σ) − e−iρt σ eiρt
∥∥∥

1 ≈
t2

2n
∥ [ρ, σ]2 + 2 ρ ◦ σ − {ρ, σ} ∥1. (4)

The convergence behavior of the error with respect to the number of biomimetic copies, denoted as k, is shown in Figs. 2 (ii) and
(iii), where we show the best and worst cases respectively. These graphics present the error in different scenarios. Firstly, the
error is depicted when directly applying LMR with the original n copies, which corresponds to Eq. 2. Additionally, the graphics
show the error for two cases of the combined protocol: one starting with 1 original copy and generating nk biomimetic copies,
and the other starting with n original copies and generating nk biomimetic copies. Finally, the error is also displayed for the
LMR with nk original copies. When provided with n copies of ρ, the improvement achieved by generating biomimetic copies
versus the direct application of the LMR operation, Eq. (2), is quantified by

εLMR(n)

εBIO(n→nk)
≈

∥ [ρ, σ]2 + 2(ρ − σ) ∥1
∥ [ρ, σ]2 + 2 ρ ◦ σ − {ρ, σ} ∥1

≡ Q1. (5)

Here, the subscript 1 in Q denotes the norm-1 or trace norm. Therefore, although the error is suppressed in the same way with
the number of copies n, thus not violating the optimality result of the original protocol from Ref. [6], the prefactors depend
on the quantum states under consideration and can lead to a reduction in the error as the system size increases. In fact, we
rigorously show that on average, Q1 will scale exponentially with the size of the quantum system considered. This behaviour is
experimentally depicted in Fig. 2 (i), where the mean, minimum and max value of Q1 from a sample of 100,000 random cases
uniformly distributed according to the Hilbert-Schmidt measure is illustrated for different number of qubits. These numerical
results show a linear scaling of Q1 with the dimension of the system for the average case. We also demonstrate the regimes
in which our protocol provides an advantage, considering the cost of implementing the biomimetic cloning machine and the
hypothetical cost of generating an additional copy of ρ. As a final remark, even though we have focused our study in a particular

non-linear transformation, the exponentiation, our results constitute a promising starting point to enhance the implementation
of many quantum protocols that require multiple copies of a quantum state, particularly when its breed resources are costly or
limited.
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(iii)

FIG. 2. We depict the results obtained from randomly generated cases distributed according to the Hilbert-Schmidt measure, with t = 0.2
and n = 4 original copies. (i) Mean value of Q1 across a sample of 100,000 random cases for each number of qubits. (ii) Minimum (ii) and
maximum (iii) value of Q1 among the 100,000 random samples, specifically for q = 4.
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