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I. MOTIVATION

In the field of medical image analysis, several challenges affect learning tasks and crucial applications. These
challenges include high-dimensional data with complex correlations, the presence of noise, the importance of
interpretability, and the scalability of applied algorithms. Tensor Networks, originating from the analysis of quantum
many-body systems, offer a powerful and efficient framework for handling high-dimensional datasets and potentially
solving these issues. Tensor networks can be applied to various medical imaging tasks, including image segmentation,
classification and reconstruction. While some of these applications have been explored in recent works [1-3], this
paper focuses on addressing the challenge of anomaly detection, by leveraging a combination of unsupervised and
semi-supervised settings, where only a subset of anomalous samples is labeled. This approach can mitigate the problem
of the typically small number of labeled anomalous data in medical imaging, and the skepticism surrounding learning
solely from healthy samples without human input during the model’s training.

II. METHODS

This work primarily studies one-dimensional tensor network structures, which currently offer a solid theoretical
understanding of their representation capabilities, and explores the role of image preprocessing and higher-dimensional
embedding as crucial steps for presenting data to the tensor network.

Aspiring to apply these models to anomaly detection in 3D images, specifically for lung cancer screening CT images,
we are first conducting a baseline study on 2D slices. We use the LIDC-IDRI [4] dataset of lung cancer CT scans, and
similar to recent work [5], for now, we extract 256x256 2D patches and use MaxPooling to reduce dimensionality to
64x64 due to current memory constraints. Each image is marked as benign or malignant. Before data is fed into a
tensor network, two key aspects need to be considered: how to preserve spatial correlations and how to embed each
pixel. To address the first concern, we are incorporating spatial information into the data representation by applying
positional encoding to images. Additionally, previous research has shown that flattening 2D images to 1D vectors can
result in the loss of spatial pixel correlation [1]. To address this, we follow the method that preserves local interactions
by only flattening the images in small patches [6], using the squeeze method as described in [1, 2]. As a next step,
data is mapped to high-dimensional space V' by a local feature map ¢. In this work, we use a Gaussian radial basis
function (RBF) for embedding.

Our research employs a combination of unsupervised and semi-supervised learning setups, as illustrated in Fig. 1,
where a small percentage of labeled anomalies (malignant nodules) are injected into the training set. With our current
focus on 1D tensor network structures, in the unsupervised step, we use the Spaced Matrix Product Operator (SMPO)
to be trained for anomaly detection, where the approach for achieving good performance follows that of paper [7]. The
SMPO model, trained on healthy images, learns to perform the linear transformation S : V' — v with the objective of
mapping normal training instances to the surface of the hypersphere in v:

L(x) = ﬁ S (log([|S6(z)]12) — 1)? (1)

TET

* Contact author: ema.puljak@cern.ch


mailto:ema.puljak@cern.ch

The data with injected anomalies is then transformed by the SMPO model, and a semi-supervised objective Lgepmi (3)
is used to train a Matrix Product State to correctly classify between healthy and malignant nodules, plus penalizing
small values of the function (1) for malignant samples. For testing, we use separate anomalous and normal samples,
assuming a real-world scenario where labeled anomalies are typically unavailable.
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FIG. 1. Our research pipeline goes as follows: 1) data preprocessing, where d is the dimension of the positional embedding, k is
the dimension of the kernel matrix for the squeeze function, Ny = N/k?, No = N1/k?; 2) unsupervised training of the SMPO
model on healthy samples; 3) semi-supervised training of the MPS model on transformed images, where m is the number of
classes. B is the bond dimension.

III. RESULTS

After the preprocessing and embedding steps, the SMPO model is trained in an unsupervised manner on healthy
images, achieving an Area Under the ROC Curve (AUC) score of 60.2% (first ROC curve in Figure 2). Next, the
SMPO model when applied to a new set of healthy and malignant samples creates a first separation between samples,
where the output is reshaped to the chosen image size (NoxNs). In the semi-supervised step, the MPS model, trained
on these new healthy instances with 5% injected anomalies, shows improved performance, achieving an AUC score of
83.6%. For each step, the squared norm of the transformed images (||S¢(z)||3) is used as the anomaly score, where
a smaller value indicates an anomaly. Here, S denotes the SMPO model. The distinction between malignant and
healthy samples is more evident in the upper right plot of Figure 2, which is used to create the final ROC curve for the
MPS model.

Additionally, we are conducting a study to understand the impact of different embedding functions. For each model,
a grid search is performed to find the best hyperparameters. This includes optimizing for the amount of expressivity
and correlation described by the bond dimension, as well as the output dimension for the SMPO model.
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FIG. 2. Images, both malignant and benign, are preprocessed using the squeeze method. The SMPO model is first trained on
healthy images, resulting in an AUC score of 60.2%. The data transformed by the SMPO model is then passed to the MPS
model, which is trained with 5% injected anomalies. This approach improves anomaly detection performance, achieving an AUC
score of 83.6%. The separation between anomalies and healthy samples is clearly visible on the anomaly score distribution plot
(upper right).

IV. CONCLUSION AND FUTURE WORK

We are proposing a realistic setup based on 1D tensor network models for detecting anomalies in medical images,
motivated by the limited amount of labeled samples and the need to analyze high-dimensional datasets. Preliminary
results on lung nodule malignancy detection are promising. As future work, we will perform a systematic study of
different data embeddings, as well as studying the expressivity and scalability of the chosen model structures. Further,
we will perform exhaustive testing to compare with classical machine learning models. Finally, we will also consider
the possibly of using 2D tensor network structures, towards processing 3D images.
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