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Machine learning (ML) is ubiquitous and it is natural to ask if quantum resources can be used to provide some
advantage. One natural fit for these resources is kernel methods [1]. Kernels, which essentially provide a similarity
metric between data points, appear as filters in convolutional neural networks [2], can represent attention matrices in
transformer networks [3], are used as training signals for generative networks [4], and can provide a key mechanism for
causal discovery [5]. Although there has been much work on studying quantum kernels in the discrete (qubit/qudit)
case, there are only a few works which have evaluated specific, continuous variable (CV), infinite dimensional quantum
encodings [1, 6–9].

This work presents the first unifying framework for CV quantum kernels, which we use to understand and analyse
quantum kernels. This framework leverages the holomorphic representation of CV quantum computing [10], which
represents CV quantum states through the quasi-probability distribution of holomorphic functions. Importantly, this
representation provides a natural hierarchy of “quantumness” through the stellar rank – the number of zeros in the
polynomial. More precisely, the evaluation of CV quantum kernels can be shown to be equivalent to CV sampling
computation. Such computations can be simulated in O(2n) provided there are two or more modes [11, 12]. States of
infinite stellar rank, such as the cat state or the GKP state are outside of the stellar hierarchy, but can be approximated
arbitrarily well by states of finite stellar rank. Using the holomorphic representation, we derive analytic expressions
for four CV kernels: (i) a single-mode displaced Fock state kernel, (ii) a single-mode displaced and phase-shifted Fock
state kernel, (iii) the general form for any CV multi-mode kernel of finite stellar rank, and (iv) a qudit kernel.
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FIG. 1. The kernel function in the case of displacement encoding (Eq. (2)) as a function of |α− β|, the distance in the data
space, for various values of the initial Fock state, n.

First, we present the example of a single-mode displaced Fock state kernel, where a real vector is encoded into the
displacement operator applied to a general Fock state

α = (α1, α2)
⊺ → D̂(α1 + iα2) |n⟩ (1)

for α1, α2 ∈ R, resulting in the encoded state having a stellar rank of n. We calculate the closed form of this kernel

k(α,β) =
∣∣∣〈n ∣∣∣ D̂†(α1 + iα2)D̂(β1 + iβ2)

∣∣∣n〉∣∣∣2 (2)

which is the product of a Gaussian and a polynomial of degree 4n. While for a single mode encoding, we do not have
exponential growth in simulablity with stellar rank, we will use stellar rank to generate intuition for the multi-mode
encoding, which we present later. We prove that this particular kernel is radial and characteristic, meaning it can be
used in probabilistic machine learning applications [13]. In figure 1, we plot the displaced Fock state kernel function,
k(α,β) for various values of the stellar rank, n. As the stellar rank increases, the kernel’s ability to distinguish between
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large distances in the original data space, |α− β|, improves, however the amplitude of each maxima decreases, leading
to increasing concentration at low values (exponential concentration).

We construct a supervised learning classification task using the single-mode displaced Fock state kernel to exploit
the underlying structure of the kernel. The task to classify an annular data set of three concentric circles with binary
labels generated with multiple instances of the Scikit-learn dataset method, make circles. The results of the first task
are shown in figure 2, where we compare the decision boundaries of five kernels. We find that accuracy increases with
increasing stellar rank. Additionally, the displaced Fock state kernel out-performs the default Scikit-learn Gaussian
kernel. However, when the Gaussian kernel has been tuned via Bayesian optimisation, which takes a significant
amount of computational time, it is also able to classify the data to a high degree of accuracy. The displaced Fock
state kernels require no hyperparameter tuning, suggesting that these quantum kernels are better suited for this task.

FIG. 2. Plots of the decision boundaries for n = 1, 2, 3 displaced Fock state kernels (left three panels) with no hyperparameter
tuning, benchmarked against a classical Gaussian kernel (right two panels)

In figure 3, we present the effect of an additional hyperparameter c > 0 which rescales the data as α → cα.
Physically this corresponds to rescaling the value of the displacement applied to the initial Fock state, and is similar
to the bandwidth parameter presented in [14]. By increasing this bandwidth hyperparameter, we are able to improve
learning in the n = 1 kernel. However, when the hyperparameter is too large, the kernel becomes overfit.

In a separate learning experiment, we also find that when the data is very noisy, decreasing the bandwidth improves
learnability, but at the cost of the effective stellar rank of the kernel.

FIG. 3. Here we plot the performance of the n = 1 displaced Fock state kernel with bandwidth hyperparameter tuning.

Next we present the the single-mode displaced Fock state kernel with and added a phase shift, which allows for the
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encoding of three-dimensional data with the addition of the compact real variable φ ∈ [0, 2π) as:

(α1, α2, φ)
⊺ → R̂(φ)D̂(α1 + iα2) |n⟩ (3)

where α1, α2 ∈ R. This again results in a kernel that is the product of a Gaussian and a polynomial of degree 4n and
prove it is no longer a radial kernel. We find similar functional behaviour as the single-mode displaced Fock state
case, i.e. the Gaussian term suppresses kernel values representing large distances in the data.

We then present a closed form equation representing a general finite stellar rank multi-mode CV state. In this case,
the kernel is a product of a Gaussian and an algebraic function. Specifically, the algebraic function is a solution to the
polynomial equation P0(x) = P2(x)f(x)

2. For this case, the classical simuablity will scale exponentially with stellar
rank. From this, we expect that for all finite rank CV kernels, there will be kernel concentration beyond a threshold
value due to the Gaussian term. We also show that in the case where data is encoded in a CV state of infinite stellar
rank, the resulting kernel can be approximated arbitrarily well by a kernel of finite stellar rank.

Finally, we consider the case of qudit encoding, which can also be represented as a holomorphic function. In this
case, the kernel is a polynomial of degree 4d, where d is the dimension of the qudit, which acts as the stellar rank.
With this we have shown that all quantum kernels are of the form of, or can be approximated by, a product of a
Gaussian and an algebraic function.
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