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1Eötvös Loránd University, Budapest, Hungary
2HUN-REN Wigner Research Centre for Physics, Budapest, Hungary

3Ericsson Research, Budapest, Hungary

1 Introduction

This work examines the application of quantum reinforcement learning (QRL) [2] in a hybrid
quantum-classical system, where the quantum agent is represented as a parametrized quantum
circuit (PQC), optimized via gradient descent by a classical optimizer. Many reinforcement
learning environments involve high-dimensional observation spaces, such as visual data, resulting
in feature vectors with dimensions in the thousands. Encoding such large feature vectors into
the limited, noisy qubits available in current quantum devices is infeasible.

To address this, we employ classical autoencoders (AEs) [1] to reduce the dimensionality of
the original feature spaces, encoding the resulting latent features into quantum states. While
similar approaches have been tested in fully classical settings [3], to our knowledge, this is a
novel application for quantum agents.

2 Methods

We use a hybrid quantum-classical system for training QRL agents in classical RL environments.
This system integrates a classical AE for dimension reduction, a PQC-based quantum agent,
and a classical optimizer that jointly optimizes the parameters of both the quantum and classical
components. The joint training algorithm ensures that the AE learns a problem-specific feature
compression that is best suited for the given QPU architecture.

The PQC-based quantum agent πθ uses a QNN circuit architecture defined by the parametric
unitary U({θθθl};x) with trainable parameters {θθθl}, for each QNN layer l. The encoder E and
decoder D have trainable parameters θθθE and θθθD, respectively. The combined loss function for
joint training is:

L = LPPO + caeLAE,

where LPPO is the Proximal Policy Optimization (PPO) loss [4], and LAE is the AE loss (mean-
squared-error). Crucially, all parameters are updated using gradients from the combined loss:

θθθl ← θθθl − α∇θθθlL
θθθE ← θθθE − α∇θθθEL
θθθD ← θθθD − α∇θθθDL. (1)

In inference mode, only the trained encoder compresses features into latent vectors for the
quantum policy to generate actions. Optionally, we can start the training loop with a pre-
trained AE (hot-starting) or cold-starting using random AE weights. Throughout this work, we
use quantum agents implemented via a classical critic network and a QNN actor as in [7]. We use
strongly entangling [5] QNN layers with Z-measurements for qubit-based agents, while standard
CV-QNN layers [6] with homodyne measurements for the photonic agent implementation.



3 Results

We ran a series of numerical experiments to test the feasibility of our approach. We used the
CartPole-v1, Acrobot-v1 and Maze-v0 environments. The first two are part of the OpenAI
Gym library, while Maze-v0 is a custom environment, where the agent has to navigate the
player from a random cell to a given goal cell, based on a 48x48 grayscale image observation
(see Fig. 1). For all three environments we compared three techniques with a classical baseline:
a randomly initialized AE trained together with the agent (Cold AE) a pre-trained AE trained
together with the agent (Hot AE†) and a pre-trained AE with freezed weights, where only the
agent is traned (Hot AE∗). See Fig. 2 for results. To implement the numerical experiments, we
used PennyLane [8] for simulating qubit-based QNNs and computing gradients, while for the
photonic experiments, we used the Piquasso [9] framework as it supports an efficient TensorFlow
backend.

Figure 1: The Maze-v0 environment. The agent has to move the player to the goal (light grey
cell) while avoiding obstacles and going off-grid. The player starts at a random cell every time.
At each timestep the agent has to choose between 4 possible actions: up, down, left, right.
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Figure 2: Preliminary results. Different techniques of training were tested on the Acrobot-v1
environment with photonic quantum agents (a) and the Maze-v0 environment using a qubit-
based QNN agent (b); and compared to classical agents. Figures compare three techniques with
a classical baseline: a randomly initialized AE trained together with the agent (Cold AE) a
pre-trained AE trained together with the agent (Hot AE†) and a pre-trained AE with freezed
weights, where only the agent is traned (Hot AE∗). Results indicate that the joint training of
the AE with the agent is essential for the convergence of reward curves.



3.1 Tradeoff exploration

An interesting aspect of our research was exploring the tradeoff between the size of the AE and
the number of QNN layers.

In the CartPole-v1 environment, our experiments revealed that increasing the size of the
AE allows for a reduction in the number of QNN layers required. However, there are limits
to this tradeoff. Specifically, for extremely small QNN architectures, such as those with only
one layer, a larger AE alone is not sufficient to achieve satisfactory performance. Instead, a
minimum of three QNN layers is necessary for the CartPole-v1 problem to ensure adequate
performance.

Figures 3 (a), (b), and (c) illustrate the performance with a fixed number of QNN layers (1, 2,
and 3 respectively) and varying AE sizes. Conversely, Figures 4 (a), (b), and (c) show the results
for different numbers of QNN layers with fixed AE sizes. These figures collectively demonstrate
that as the size of the AE increases, smaller QNN configurations yield improved performance,
underscoring the interplay between AE capacity and QNN depth in achieving optimal solutions.
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Figure 3: Comparing various numbers of QNN layers and AE sizes for the CartPole-v1

environment. Figures (a), (b), and (c) show results with fixed AE sizes and different numbers
of QNN layers.
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Figure 4: Comparing various numbers of QNN layers and AE sizes for the CartPole-v1

environment. Figures (a), (b), and (c) show results with fixed numbers of QNN layers (1, 2,
and 3 respectively) and different AE sizes.

4 Conclusion

This study shows that hybrid quantum-classical reinforcement learning is feasible by combining
classical AEs with QNN-based agents to manage high-dimensional observation spaces. Exper-
iments in different environments demonstrate that jointly training the AE and quantum agent
significantly boosts performance. The results show the existence of a tradeoff between AE size
and QNN layer count.
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