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ABSTRACT
This study applies the Quantum Machine Learning (QML)

methods to a differential privacy (DP) technique called Pri-
vate Aggregation of Teacher Ensembles (PATE). An ensem-
ble of hybrid quantum-classical models are trained via PATE
to achieve over 99% accuracy on MNIST with enhanced
privacy, compared against classical PATE-trained classifiers.

1. INTRODUCTION

Machine Learning (ML) is extensively applied across various
fields, raising significant privacy and ethical issues [1, 2, 3, 4,
5, 6]. DP has manifested as the standard tool for gauging pri-
vacy loss [7, 8]. The notion of a privacy budget determines the
amount of information that an adversary can extract. Informa-
tion can be divided into two groups, general information and
private information. The former refers to a general property
of the dataset, whereas the latter refers to entry-specific infor-
mation. DP puts limits on how much private information can
be ascertained from querying a database, or in the case of ma-
chine learning, a classifier [9]. To mitigate these concerns, DP
employs methods like PATE, developed by Nicholas Papernot
et al. in 2017 [10].

Concurrently, the rise of quantum computing [11] prompts
exploration into Quantum Machine Learning (QML) for
privacy, though research combining PATE with variational
quantum circuits (VQC) remains scant [12, 13].

This study implements an ensemble of hybrid quantum-
classical classifiers and trains them using privacy-aggregation
of teacher ensembles (PATE). After training, the student
model will satisfy privacy loss limits. Classical classifiers
with PATE training will be used as controls in the study.

2. DIFFERENTIAL PRIVACY IN MACHINE
LEARNING

2.1. Differential Privacy

A classification (or prediction) algorithm M is said to be
(ϵ, δ)-differentially private [14] if for any two datasets D1 and
D2 that differ by exactly one element, ||D1| − |D2|| = 1, we
have,

Pr[M(D1) ∈ S] ≤ eϵ · Pr[M(D2) ∈ S] + δ (1)

where ϵ ≥ 0 called the privacy budget, δ ≥ 0 represents the
probability that the privacy guarantee may fail, and S is the
set of possible outputs of M. The definition ensures that the
output of M is nearly equally likely to occur whether any
individual’s data is included in D1 or D2, thereby masking
the presence or absence of a single individual’s data.

2.2. Privacy-Aggregation of Teacher Ensembles (PATE)

PATE [10] protects privacy by training multiple teacher
models independently, whose collective predictions were
aggregated and injected with noise to be noisy labels. Sub-
sequently, a student model is trained by the noisy labels
aggregated from the aforementioned teachers. Consequently,
the student model is isolated from direct contact with data or
parameter access to achieve privacy. Formally, there are three
steps:

1. Data splitting: A given dataset D = {(X,Y )} is
first split into n disjoint subsets Di = {(Xi, Yi)} such that

D =

n⋃
i=1

Di and Di ∩Dj = ∅ for i ̸= j (2)

2. Teachers’ label aggregation and noise addition: The
disjoint subsets {Di}ni=1 in Eq. (2) are randomly assigned to
n teachers {fi}ni=1 for training. After training, given any in-
put x, the predicted labels from each teacher {yi = fi(x)}ni=1

are aggregated using a noisy counting mechanism, namely:

yagg = argmaxy

(
N∑
i=1

1yi=y + Lap
(
2

ϵ

))
(3)

where 1yi=y is the indicator function counting the number
nj(x) = |{i : i ∈ [n], fi(x) = j}|, and Lap

(
2
ϵ

)
represents

the additional noise given by a Laplace distribution of loca-
tion 0 and scale 2

ϵ .
3. Student’s training by the aggregated labels: A

student model is then trained by data given from Eq. (3),
namely {(x, yagg)}.

The student model is then guaranteed to have (ϵ, 0)-
differentially private [14] and to be released to the public.
Intuitively, the student needs to only query the teacher en-
semble a finite number of times during training. Thus, the



privacy loss does not increase as end-users query the student.
It is noted that PATE makes no assumptions on the model
types of the teachers and students. Therefore, we investigate
the possibility of applying VQC to PATE.

2.3. Variational Quantum Circuits

The generic VQC consists of Ry(tan
−1(xi)) and Rz(tan

−1(x2
i ))

rotations for variational encoding and general single-qubit
unitary gate R(α, β, γ) as the trainable parameters with,

R(α, β, γ) := eiσxα eiσyβ eiσzγ (4)

where (σx, σy, σz) are usual Pauli matrices. CNOT gates are
employed to establish qubit entanglement. The circuit’s ulti-
mate output is represented by the σz measurement outcome.

Motivated by recent studies of quantum circuits exhibit-
ing faster learning and higher accuracy [15, 16, 17], we are
interested in investigating more potential of VQC.

2.4. Quantum PATE (qPATE)

We propose using hybrid quantum-classical frameworks to
perform PATE by supplementing VQCs into the student
model and teacher models to be aggregated as described in
Eq. (3). A hybrid quantum-classical framework is composed
of a classical neural network as a front-end encoder and a
VQC at the backend as a prediction classifier. As mentioned,
the aggregated teacher labels will inject some “fuzziness” into
the ground truth of the training labels to create privacy assur-
ance. Our qPATE method is to be contrasted with Watkins et
al. [13] work on disturbing updates of model parameters in
gradient descent.

3. EXPERIMENTS

We demonstrate the efficacy of PATE with hybrid VQC-
DNNs (qPATE) by comparing it to PATE with DNNs (classi-
cal PATE). We use a reduced MNIST [18] dataset to bench-
mark our investigations. Following Watkins et al. [13], the
MNIST is reduced to a binary classification by distinguishing
digits of ‘0’ and ‘1’ due to the computational complexity in
simulating large quantum systems. The original inputs are
padded with zeros to be images of size 32× 32.

3.1. Model Architecture and Hyperparameters

To investigate the advantage of QML, we compare qPATE
versus the classical PATE. For classical PATE, both teacher
and student networks utilize four convolution blocks (Fig. 1)
where the first two convolution blocks consist of a 3 × 3
convolutional layer batch normalization, and ReLU activation
and the last two convolution blocks consist of a 1× 1 convo-
lutional layer, batch normalization, and ReLU activation. For

qPATE, both teacher and student networks adopt two convo-
lution blocks and an additional VQC block, where two con-
volution blocks consist of a3 × 3 convolutional layer, batch
normalization, and leaky ReLU activation. See Fig. 2.

Fig. 1: A Classical PATE architecture of four convolution blocks.

Fig. 2: The qPATE network architecture.

In qPATE, the VQC block includes four subcircuits: two
for angle encoding and two for variational encoding, trans-
forming 512-dimensional embeddings from classical blocks
to 10-dimensional embeddings, then to a 10-qubit state. Each
variational subcircuit, featuring a rotation gate and a CNOT
gate (Fig. 3), contributes to a total of 60 adjustable parame-
ters [19, 20].
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Fig. 3: This VQC block of 10 qubits processes embeddings from
convolution blocks: U(x) denotes an angle encoding while ϕi, θi,
and ωi are parameters in Eq. (4) to be determined in the VQC
training process. The upper right has two qubits measured in σz .

The experiments outlined in the paper are defined by sev-
eral key hyperparameters: optimizer (AdamW chosen post-
preliminary tests), epochs, training sample count, learning



rate (set at 10−3), batch size 64, and weight penalty 10−4.
These parameters were consistent across both classical and
qPATE models.

ϵ was derived from DP hyperparameters S, σ, with δ set
at 10−5 for all classifications using cross-entropy loss. As
per [14, 9], the risk δ ∼ O(1/n) with δ > 1/n ensures DP
by releasing nδ records. Noise levels varied, affecting both
classical and quantum PATE models, influencing ϵ across ex-
periments.

4. RESULTS

ϵ quantifies privacy loss while a lower ϵ enhances protection.
In Table 1, qPATE is shown to outperform classical PATE by
28.84% at ϵ = 0.01. For ϵ ≥ 0.1, both models performed
comparably. Experiments of large ϵ = 0.1, 1, 10 showed
qPATE excelling after just one training epoch level (Fig. 4).
Although performance converged at higher ϵ values, qPATE
maintained outperformance at small ϵ’s, demonstrating better
accuracy and convergence while ensuring robust privacy.

ϵ δ classical PATE quantum PATE

10−2 10−5 0.534 ± 0.0992 0.688 ± 0.0163
10−1 10−5 0.985 ± 0.0215 0.992 ± 0.0098
1 10−5 0.997 ± 0.0046 0.99 ± 0.0134
10 10−5 0.997 ± 0.0046 0.991 ± 0.0137

Table 1: Accuracies of the binary MNIST classification after 20
epochs. qPATE obtained higher accuracies on ϵ = 10−2, 10−1. The
number of teachers is 4.

Fig. 4: Accuracy vs. ϵ for 4 teachers in classical PATE and
qPATE. The results of 10 trials are averages with an error bar
denoting the standard deviation. Subfigure (A), (B), (C) are results
of 1, 10, 20 training epochs, respectively.

5. CONCLUSION

This is the first study to leverage QML in implementing PATE
that also displays quantum advantage in complexity-matched
models. The framework’s potential lies in achieving high pre-
diction accuracy with small ϵ values, demonstrating that com-
bining VQCs with Deep Neural Networks significantly im-
proves performance. Future work will explore generalizing
these findings to more complex tasks like CIFAR10 and Ima-
geNet21k.
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