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1. Introduction
Quantum machine learning (QML) stands out as an inno-
vative application of quantum computation. The success
of QML algorithm does not solely depend on how well the
model fits the training data but, more importantly, on their
ability to accurately predict the outcomes of previously un-
seen data. This crucial capability, known as generalization,
has been extensively explored and analyzed through the
lens of statistical learning theory. However, recent studies
have highlighted the limitations of current understandings
of generalization based on uniform bounds in both classical
and quantum machine learning frameworks (Zhang et al.,
2021; Gil-Fuster et al., 2024). In this work, we propose a
complexity measures based on margin distribution, which
can accurately capture the generalization performance of
QML models.

2. Rethinking Generalization
Suppose there is an unknown joint probability distribution D
governing the quantum state ρ and its corresponding label y.
In this section, for simplicity, we will consider ρ ∈ C2n×2n

and y ∈ {−1,+1}, namely n-qubit binary classification
task. With m independent and identically distributed (i.i.d)
samples S = {ρi, yi}mi=1, the goal is to find a hypothesis
h∗ with small true error R(h∗) = Eρ,y∼D[1sgn(h∗(ρ)) ̸=y].
Since the true distribution D is unknown, we alternatively
find h (from a hypothesis class H) with small empirical risk,
R̂S(h) = 1/|S|

∑
ρ,y∈S 1sgn(h(ρ)) ̸=y. For a hypothesis h,

we define a generalization gap as a difference between true
and empirical risk, g(h) = R(h)− R̂S(h). A common way
to understand generalization is to upper bound g(h) by a
complexity measure of the hypothesis class H. For example,
the hypothesis class of Quantum Neural Networks (QNN)
with parameterized quantum circuit U(θ) and observable O
can be expressed as HQNN = {ρ 7→ Tr(OU(θ)ρU†(θ)) :
θ ∈ Θ}.
Theorem 2.1 (Rademacher Complexity Bound). For any
δ > 0, with probability at least 1 − δ over a sample S
of size m drawn according to D, following holds for any
h ∈ HQNN

R(h) ≤ R̂S(h) + R̂S(sgn ◦ HQNN) + 3

√
log(2/δ)

2m
. (1)

Here, sgn ◦ HQNN = {ρ 7→ sgn(h(ρ)) : h ∈ HQNN},

and R̂S(H) = Eσ[suph∈H
1
m

∑
i σih(ρi)], where σi are

i.i.d Rademacher random variables that takes value ±1 with
equal probability 1/2.

Although Theorem 2.1 provides rigorous theoretical guaran-
tee for generalization, it can result in vacuous upper bound,
especially when HQNN is extensive enough to overfit ran-
dom labels. For example, consider a corrupted sample S̃ =
{ρi, ỹi}mi=1, where each ỹi are independently assigned ±1
with a probability 1/2, irrespective of the data ρi. Suppose
HQNN can overfit the corrupted sample S̃, i.e. ∃h ∈ HQNN

s.t. R̂S̃(h) ≈ 0. Since the true error with respect to the cor-
rupted distribution is 0.5 for all h, the analysis indicates that
0.5 ≲ R̂S(sgn ◦H)+3

√
log(2/δ)/2m. Consequently, the

Rademacher complexity bound g(h) ≲ 0.5 is uninformative
for binary classification.

Zhang et al. (2021) highlighted that modern (classical) ma-
chine learning models, due to their large size and extensive
numbers of parameters, can overfit random labels, suggest-
ing our understanding of generalization is incomplete. Sim-
ilarly, Gil-Fuster et al. (2024) demonstrated that Quantum
Convolutional Neural Networks (QCNNs) can also overfit
random labels in the Quantum Phase Recognition problem,
indicating this issue extends to quantum machine learning.
It is important to note that this problem is not restricted to
Rademacher Complexity bound, but any uniform general-
ization bounds, including the results from Caro et al. (2021;
2022; 2023); Bu et al. (2021; 2022; 2023).

3. Margin based Generalization in Quantum
Machine Learning

The concept of margin has been extensively explored since
the early days of machine learning, offering theoretical foun-
dations for Support Vector Machines (Cortes & Vapnik,
1995). The margin quantifies the difference between the
output for correct labels and incorrect labels. More specifi-
cally, in k-class classification, for a data point (x, y), where
x ∈ X and y ∈ [k], and a classifier f : X 7→ Rk, margin is
defined as f(x)y−maxj ̸=y f(x)j . Here, the k-dimensional
vector output of the classifier corresponds to the probabil-
ity of assigning x to each class. Recently, Bartlett et al.
(2017) proposed a generalization bound based on margins,
normalized by a spectral norm of the weights, in the con-
text of deep neural networks. It illustrated that complexity
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Figure 1. A (Tukey) box-and-whisker plot depicting the margin distributions of optimized four qubit Quantum Convolutional Neural
Networks (QCNNs). The results for QCNNs with two, four, and six layers are displayed, along with their corresponding test accuracies.
QCNNs were trained for 4-class classification task aimed at quantum phase recognition (QPR). The experiment was performed with
varying degrees of label noise: QPR dataset with pure labels (left), half randomly labelled dataset (middle), and full randomly labelled
datasets (right). As the noise (corruption) level increases, the margin distributions tend to exhibit a more pronounced skew towards the
left, indicating that a greater proportion of samples are classified with smaller margins. Notably, the margin distribution exhibits a strong
positive correlation with test accuracy across all scenarios.

measures based on margin can address the shortcomings
of uniform generalization bounds, as will be explained in
more detail later in this section. Furthermore, it empiri-
cally demonstrated a significant correlation between margin-
based measures and generalization error. Since then, margin
is extensively used as a tool to understand generalization in
(classical) machine learning (Neyshabur et al., 2017; Jiang
et al., 2018; Neyshabur et al., 2018; Farhang et al., 2022;
Jiang et al., 2020).

The notion of margin can be extended to understand gener-
alization performances of quantum machine learning mod-
els. Consider a k-class classification employing quantum
neural networks, where the hypothesis class is defined as
HQNN = {ρ 7→ [Tr(MiU(θ)ρU†(θ))]ki=1 : θ ∈ Θ}. Here,
measurement outcome of Mi represents the probability of
assigning ρ to label i.

Theorem 3.1 (Margin Bound for Quantum Neural Net-
works). For any δ > 0 and γ > 0, with probability at
least 1− δ over a sample S of size m drawn according to
D, following holds for any h ∈ HQNN,

R(h) ≤ R̂γ(h) +
2

γ
R̂S(HQNN) + 3

√
log(2/δ)

2m
. (2)

Here, R̂γ(h) represents the empirical margin error, quan-
tifying the number of samples whose classification mar-
gin falls below the threshold γ. Formally, it is defined as
R̂γ(h) = 1/|S|

∑
ρ,y∈S 1h(ρ)y≤maxj ̸=y h(ρ)j+γ . The upper

bound described in Equation 2 comprises of two competing
terms: selecting a larger γ increases R̂γ(h), while simul-

taneously decreasing 2R̂S(HQNN)/γ. According to Theo-
rem 3.1, a hypothesis that classifies S with large margins
results in a tighter upper bound, as opting for a larger γ
does not significantly increase R̂γ(h). Thus the margin
distribution, which is the distribution of margins of sample
S, plays a crucial role in comprehending the generalization
performance of QML models.

Unlike uniform generalization bounds, margin bound pro-
vides distinct results depending on the distribution of the
data. For instance, if we corrupt the sample from S to S̃
(and the data distribution from D to D̃) as outlined in Sec-
tion 2, the margin distribution will also vary, leading to a
different generalization upper bound. If the margin distribu-
tion skews toward left as the data are corrupted, the margin
bounds correctly explains the increasing generalization gap,
a subtlety that uniform generalization bounds fail to capture.

Remark 3.2. It is noteworthy that we can further upper
bound the R̂S(HQNN) and achieve more interpretable re-
sults. For instance, Ref (Bu et al., 2021; 2022; 2023) analyze
the Rademacher complexity of QNN through the lens of
quantum resource theory. Additionally, Ref (Caro et al.,
2022) quantifies the covering number of QNN based on
the numbers of parameters. This result, combined with
Dudley’s entropy integral, can be utilized to establish the
upper bound of Rademacher complexity (Vershynin, 2018).
However, in this study, our primary focus lies on exploring
the margin distributions of quantum machine learning mod-
els and how margin-based complexity measures strongly
correlate with generalization gap.
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Figure 2. A comparative analysis demonstrating mutual information between generalization gap and various complexity measures. This in-
cludes four margin-based complexity measures: mean, lower quartile (Q1), median (Q2), and upper quartile (Q3), along with two parameter-
based complexity measures: number of parameters and number of effective parameters. The experiments were conducted using three
distinct variational ansatz: 1) QCNN without parameter sharing, 2) QCNN with parameter sharing 3) StronglyEntanglingLayer
(see Bergholm et al. (2020) for details). Furthermore, the experiments were repeated under label corruption as outlined in Figure 1. In all
scenarios, margin-based complexity measure exhibited more mutual information about the generalization gap compared to parameter-based
complexity measures. Notably, the mutual information tends to decrease with higher levels of corruption.

4. Experimental Results
This section experimentally demonstrate strong correlation
between margins and generalization performances of QML
models. We conducted extensive tests on Quantum Neu-
ral Networks (QNNs) with various hyperparameters, in-
cluding circuit architecture, variational ansatz, number of
layers, number of training samples, training batch size,
maximum training iteration. The models were trained
to perform the Quantum Phase Recognition (QPR) task,
which involves classifying the phases of the ground state
of the generalized cluster Hamiltonian, defined as H =∑n

j=1(Zj −J1XjXj+1−J2Xj−1ZjXj+1) (see Caro et al.
(2022); Gil-Fuster et al. (2024) for details). Additionally,
the experiments were conducted under different levels of
label noise: pure labels (r=0.0), half random labels (r=0.5),
and fully random labels (r=1.0).

Figure 1 illustrates margin distributions of the optimized QC-
NNs in a box-and-whisker plot, alongside their respective
test accuracies, conducted with varying numbers of QCNN
layers. Across all layer configurations, the test accuracy de-
creases (and consequently, the generalization gap increases)
as the labels are randomly corrupted with increasing levels
of noise. The margin distributions exhibit significant left-
ward skew as the labels are corrupted. Thus, the margin
bounds (Equation 2) correctly captures the generalization
behavior under label corruption. Moreover, QCNNs with
a larger number of layers tend to have higher test accuracy

and exhibit right-skewed margin distributions, which further
validates that margin distribution effectively captures the
generalization performance in QML.

In Figure 2, we compare four margin-based complexity
measures—mean, lower quartile, median, and upper quar-
tile of the margin distribution—against parameter-based
complexity measures. The latter includes 1) the number
of parameters and 2) the number of effective parameters,
which underwent significant changes during the optimiza-
tion process. We evaluated mutual information between
generalization gap and various complexity measures, treat-
ing them as random variables depending on sample S and
hyperparameters of the models. Intuitively, a larger mutual
information value indicates that the complexity measure
contains more information about the generalization gap,
thereby reducing uncertainty about generalization given
the complexity measure. The experiments were conducted
with three distinct variational ansatz: 1) QCNN without
parameter sharing (Grant et al., 2018), 2) QCNN with pa-
rameter sharing (Cong et al., 2019; Hur et al., 2022), and
3) StronglyEntanglingLayers (Bergholm et al.,
2020). Across all models, the mutual information values
with margin-based complexity measures are significantly
larger than those with parameters-based counterparts, in-
dicating that margin distribution is more effective tool for
understanding the generalization performance of QML mod-
els.
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